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Abstract 

 

This paper summarises some basic ideas of Game Theory and applies them to examples 

taken primarily from the study of Economics.  It explains that Game Theory provides an 

approach to formulating strategies of action when players interact, such as the decisions of 

one actor affects the decisions and outcomes of action of the other, and vice versa.  Such 

situations are frequently encountered in Economics, notably in the sphere of the Theory of the 

Firm.  A range of types of Game are outlined – simultaneous, reiterated, and sequential, along 

with methods of analysis appropriate to each.  It is shown how in most Games equilibrium 

outcomes can be determined – known as Nash Equilibria.  Having reviewed some of the 

central ideas and techniques of Game Theoretic analysis, the paper applies them to some 

familiar problems in Economics, such as Oligopoly output, pricing, and advertising decisions, 

the Free Rider Problem in Public Goods, and Development Economics.  We conclude that 

Game Theory provides a powerful tool for thinking systematically about interactive decision 

making scenarios, but that its conclusions are less predictively insightful than some might 

expect since Game Theory models make assumptions that are often unrealistic (such as 

rational behaviour and perfect information) and because human actors tend intuitively to follow 

Game Theory reasoning without being consciously aware of doing so.  Game Theory enriches 

our understanding of human decision-taking more than it informs it.   
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What is Game Theory? 

 
Game Theory is a theory of decision taking in situations where decision-makers are 

interdependent.  A Game is a situation in which a limited number of decision takers 

(called players) interact which each other, such that the actions of each of the players 

affects the outcomes and decisions of each of the others.  This means that when a 

player contemplates an action, they need to reflect upon how the other participants 

will respond to that action, since this will affect the outcomes of their action.  Such 

actions, which take into account the possible responses of other players to that action, 

are called Strategic Actions.  The outcomes for the players or decision takers in these 

interactive situations are called payoffs, and the payoffs to the players in a game can 

be set out in a normal form payoff matrix.      

  

Game Theory analyses these interactive situations and asks what strategies or rules 

of action the players should follow in order to secure the best payoffs.  Such strategies 

are called Optimal Strategies.  The ‘Theory of Games’ was developed in the 1920s 

and 1930s.  The pioneer study was by the French mathematician Emile Borel in the 

early 1920s, but his ideas were little known and the most important early paper was 

by Hungarian mathematician John von Neumann in his 1928 ‘On the Theory of Games 

of Strategy’.  This dealt with the strategy of zero-sum games (where what one person 

wins another loses) and put forward the idea of the MaxiMin solution to such games.  

Von Neumann returned to the subject in the 1940s, writing, with Oskar Morgenstern, 

the Theory of Games and Economic Behavior.1  This initiated a surge of interest in 

Game Theory, especially at Princeton, where Von Neumann was a member of the 

Institute of Advanced Study, and at the RAND corporation in California, which 

researched the use of Game Theory concepts in formulating military strategy.  It was 

at Princeton that John Nash put forward, in 1950, the concept of an equilibrium in non-

cooperative games, now known as a Nash Equilibrium, while it was at RAND that the 

well-known scenario of the Prisoner’s Dilemma was developed.2     

 

As is apparent, ‘Games’ exist whenever decision takers interact with each other and 

shape their behaviour in the light of that interaction, and such situations occur very 

frequently in social life – in sport, in politics, in negotiations, in war, in relationships.  

They are, in fact, a ubiquitous feature of life, and Game Theory has been applied to 

just about all of them.  However, one of its earliest and most sustained applications 

has been in the sphere of economics, relating to the behaviour of firms, consumers, 

 
1 J. Von Neumann and O. Morganstern, Theory of Games and Economic Behavior (Third Edition, 
Princeton University Press, Princeton, 1953).  
2 For an introduction to the history of Game Theory, see W. Poundstone, Prisoner’s Dilemma (Anchor 
Books, New York, 1992), and R. Leonard, Von Neumann, Morgenstern, and the Creation of Game 
Theory (Cambridge University Press, Cambridge, 2010).  
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workers, and governments.  Hence, we focus primarily on economics here.  But we 

shall draw on examples from other areas of life, and the principles outlined here apply 

to Games in general, not just narrowly ‘economic’ Game scenarios.   

 

Some More Definitions  

We have already defined the key concepts of: Game; Player; Strategic Action; Optimal 

Strategies; Payoffs.  In economics the chief players are firms, but they can also include 

consumers, workers, and investors.  In the case of firms, a strategy or rule of 

behaviour might be: ‘If a rival firm raises its price, I will keep my price unchanged; if it 

reduces its price, I will reduce mine’; ‘Each year I will launch a new product design’; ‘If 

my rival advertises, I will advertise’.  For consumers a strategy might be: ‘If a firm 

raises its price up to £100 I will keep buying the product; if the price goes above £100 

I will switch my demand to another firm.’  For a worker a strategy might be: ‘I will do 

an hour of overtime if my employer pays me 50% more per hour; if they pay me 100% 

more per hour I will do two extra hours’; ‘I will ask for promotion, if I get it I will stay, if 

I don’t I will leave’.  And so on.  Players formulate these strategies by estimating 

potential payoffs from their decisions – where the payoff is something they value and 

want to achieve.  So the payoff for a firm may be profit; the payoff for consumers may 

be utility; the payoff for workers may be income or the chance of promotion.  Given a 

range of potential strategies (rules of action) that can be pursued, the Optimal Strategy 

is then the one which maximises the expected payoff. 

 

 

Classifying Games  

 

One of the things that makes Game Theory appear rather confusing is the range of 

different ways that Games can be classified.  These classifications relate to the 

assumptions underlying the Game – is it one-off or repeated; do the players have 

perfect information or not; do players make decisions at the same time or one after the 

other, etc.  According to what we assume, the outcomes of the Games tend to differ.  

Here we outline just a few of the basic classifications of types of Game. 

 

Cooperate or Non-Cooperative 

 

1. A Cooperative Game 

This is where players are able to, or wish to, make binding commitments to each other 

so that they can formulate joint strategies.  For example, two firms meet up before 

setting prices and agree to set prices that are the same; or they may agree to each 

sell in different sectors of a market.   
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2.  Non-Cooperative Games 

This refers to situations where the negotiation and enforcement of binding contracts is 

not possible.   

 

In economics, we are chiefly concerned with non-cooperative games.  In most 

economies, for example, it is illegal for firms to draw up contracts to set prices or 

output.   

 

Perfect and Non-Perfect Information 

 

A key differentiator is the question of information.  There are two main types of game: 

 

1. Games of Perfect Information.  These are situations where each of the players 

has perfect knowledge of the decision context: they each know all the possible actions 

of all the other players; they all know all the outcomes for all the players from each 

decision; and they know the preferences regarding outcomes for all the players. Since 

all the players are assumed to know these things they are said to be common 

knowledge.   

 

2. Games of Imperfect Information.  In these situations the players lack information 

regarding aspects of the decision taking context: they don’t know the payoffs to the 

other players; they don’t know the history of all the moves in the game; or they don’t 

know the preferences of the other players.   

 

 

Zero-Sum and Non-Zero Sum Games    

 

A zero-sum game is a game where the two players have a directly competing interest.  

Most actual parlour games are like this – if I win at monopoly or snakes and ladders, 

you lose.  If we play for money, then there is a fixed pot of money – if I win £10, you 

lose £10.  They are ‘zero-sum’ because the outcome adds up to zero – if I win £10 

(+10) then you lose £10 (-10).  Similarly, in an election contest between two 

candidates, if one gains 5 per cent more support the other loses 5 per cent support.   

These were the first Games to be studied.  Von Neumann wanted to know if it is 

possible to predict the outcomes of such Games – assuming each player was rational 

and acted in the light of the possible rational actions of the other player.  His answer 

was that it was possible to predict the outcome of two-person zero-sum games.  Such 

outcomes that can be predicted are called Solutions, and they would be equilibrium 

outcomes, since no player would have a reason to unilaterally change their strategy 

once they have arrived at it.   The solution to these games is called the MaxiMin 

solution.   

 



6 

 

6 
 
 A Haberdashers’ School Occasional Paper.  All rights reserved. 
 

 

To give an example.  Consider a strategic Game involving an Army and a Guerrilla 

insurgency.  The army has the initiative and decides whether to fight the insurgents in 

the jungle or at the edge of the cities.  The guerrillas must then decide whether to 

openly attack the army or engage in skirmishes with them.  The zero-sum payoff matrix 

is as follows.1  

 

  Guerrilla rebels 

  Open Attack Skirmish  

Army Jungle Pursuit 
 

-5, +5 -7, +7 

Hold the Cities 
  

+8, -8 +1, -1 

 

Figure 1.  A Payoff Matrix for a Zero-Sum Military Strategy Game 

 

We call a table like the one above a Normal Form Payoff Matrix.  What it does is 

show the payoffs to two players according to the combinations of actions (moves) that 

they make.  Each square shows the outcomes of a particular combination of moves, 

with the payoff to the Row player being given first (in this case Army) and the payoff 

to the Column player (Guerrilla rebels here) being given second.  For example, the top 

left hand square shows that if the army pursues the guerrillas into the jungle the army 

does badly and its payoff is -5.  By contrast, the guerrillas do well fighting in the jungle 

and their payoff is +5.  Because we are assuming a zero-sum game, a loss of 5 to the 

Army is matched by a gain of 5 to the Guerrillas.   

 

The aim of Game Theory is to predict what will be the outcome of this Game situation 

given the payoffs of different strategies for the players and assuming they are rational.  

What Von Neumann demonstrated in his 1928 paper is that such Games have a 

predictable outcome generated by what he called the MiniMax theorem.  This states 

that: 

The determinate outcome of a two-person Zero-Sum Game occurs when one 

player Maximises his Minimum payoff (MaxiMin), while the other player 

attempts to Minimise his opponent’s Maximum payoff (MiniMax).  When each 

player does this, neither player can change their behaviour and do better, so 

this is the stable equilibrium of the Game.  

 

Let us apply this principle to the above Game.  We start with the Army and assume 

that the Army wants to Maximise its Minimum payoff from the situation it finds itself in.  

Should it enter the jungle or stay in the cities?  If it enters the jungle its worse payoff 

is -7, when it hits a skirmish with the Guerrillas.   This is its worst outcome in the entire 

 
1 This example is taken from M. Shubik (ed.), Game Theory and Related Approaches to Social Behavior 
(John Wiley and Sons, New York, 1964), pp. 14-18.   
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Game.  By contrast, the worst outcome the Army can encounter if it remains based in 

the cities is +1.  So strategy ‘Hold the Cities’ is its MaxiMin.  Given this, what will the 

Guerrillas do?  Their strategy should be to Minimise the Maximum payoff to the Army 

given their choice of the second row (Hold the Cities).  This occurs when the Guerrillas 

engage in the column two strategy, skirmish.  Then they have limited the army to only 

+1, whereas if they had taken the Army on in open combat the Army would have 

scored 8 and the Guerrillas would have lost 8.  Hence, we can predict that the outcome 

of this Game is the combination of strategies ‘Army Holds the Cities’ and Guerrillas 

engage in ‘Skirmishes’. 

 

To see that this result is quite logical, take each decision taker in turn.  If we start with 

the Guerrillas, we can see, looking at the column scores for the Guerrillas, whatever 

the Army does, the Guerrillas will always do best if they skirmish.  So, if the Army 

enters the jungle, the Guerrillas score +5 if they fight them in open battle and +7 if they 

skirmish.  Hence, they skirmish.  And if the Army stays in the cities, the Guerrillas 

score -8 in open battle and -1 if they skirmish.  Thus, the Guerrillas always skirmish.  

Since the Guerrillas will never willingly engage in Open Attack we call Open Attack a 

Dominated Strategy – one they will never use.  Equally, the Army always does better 

in the cities than in the jungle whatever the Guerrillas do – if they enter the jungle they 

make losses of -5 or -7, whereas if they stay in the cities their gains are either +8 or 

+1.  Clearly, the Army must always stick to the cities and will never enter the jungle 

(so jungle is a Dominated Strategy for the Army).  And if the Army is in the cities, and 

the Guerrillas always skirmish, we end up in the bottom right payoff box, which is the 

MiniMax predicted outcome.         

 

Such zero-sum games were the first to be studied.  However, they are not the main 

focus of this paper since zero-sum games are not very common in economics.  In 

economic games the outcomes are not fixed, and while players can do better or worse 

than the other, a win for one does not directly lead to an equal loss for the other.  Both 

players can often enjoy positive outcomes (for example two firms both setting a high 

price for a good).  The games are therefore Positive Sum with a range of payoffs.  

A more important division between the games we consider in economics have to do 

with the timing of what strategy to use.    

 

The Timing of Decisions  

 

Here there are three main possibilities.   

 

1. Simultaneous Games.  This is where each participant or player chooses their 

optimal strategy at the same time, so that they don’t know what strategies the other 

players are actually choosing.  In deciding what to do they have to think about what 

the other players might do – but they won’t know for sure until the game is played.  So, 
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a firm choosing whether to set a price high or low will need to reflect upon what prices 

other firms might set; but it won’t actually know the prices other firms set until they all 

announce their prices simultaneously.  

 

2. Repeated or Reiterated Games.  This is where the simultaneous game is replayed 

numerous times.  In each case the players won’t know for sure what the other players 

will do before they make their decision.  But they will have played the simultaneous 

game on multiple occasions.  For example: imagine firms which launch new clothing 

brands each spring.  Every year they have to decide whether to set high or low prices, 

and each year they won’t know what the other firms have decided.  However, they will 

know what those firms have done in previous years.   

 

3. Sequential Games.  These are situations where players take decisions 

consecutively.  One player makes a decision and then the second player takes a 

decision, knowing what the first player has done.  Thus, in our clothing example: firm 

one announces the price of its spring collection, and firm two knows this decision when 

it decides how to price its product and this knowledge can inform its decision as to 

which strategy to pursue.        

 

We now consider these simultaneous, reiterated, and sequential Games in more 

detail.  

 

Simultaneous One-Off Games with Perfect Common Information 

  

What we are trying to do when confronted with a one-off interactive game is predict 

what is the best strategy for a player to pursue, assuming that they are rational and 

wish to maximise their expected pay-off from the interaction.  Remember that the 

agent is having to decide what to do given that they don’t know for sure what the other 

agent will do – although both do know the payoffs for themselves and others of each 

possible combinations of actions.  Both players reveal their actions at the same time, 

and they do so only once.  The question is: what should a player do in this situation? 

A key step to answering this question is the concept of a Dominant Strategy.   

 

A Dominant Strategy is a rule of action that will yield the optimal or best 

outcome for a player irrespective of what the other player decides to do.  

 

This strategy is always the right thing for a player to do whatever the other player 

decides to do.  By contrast, a Dominated Strategy is a strategy which is NEVER the 

right thing to do whatever the other player does.   
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Let us see what a Dominant Strategy looks like.1  Imagine two companies, A and B, 

both of whom are releasing a film on the same day.  The question is: should each firm 

advertise their new film?  To analyse this question we create a payoff matrix.  The 

figures in the below table refer to the profits the firms make millions of dollars if they 

do or do not decide to advertise.  

 

 

  Firm B 

  Advertise  Don’t Advertise  

Firm A Advertise 
 

100, 50 150, 0 

Don’t Advertise 
  

60, 80 100, 20 

 

Figure 2.  An Advertising Game with Two Dominant Strategies   

 

In this matrix, each box contains the different payoffs to each firm.  The first number 

in the box refers to the payoff to the Row player on the left; the second number refers 

to the Column player.  For example, taking the top left-hand box, 100 is the payoff to 

Firm A and 50 is the payoff to firm B.  This payoff matrix summarises the outcomes for 

the two firms according to whether each firm decides to advertise or not.  Thus, if firm 

A advertises and Firm B advertises as well, the payoffs are $100m for firm A and $50m 

for Firm B (top left-hand box).  If Firm A does not advertise but Firm B does, then the 

outcome is $60m profit for Firm A and $80m profit for firm B (bottom left-hand box).  

And so on.   The question is: given these four possible sets of outcomes, what strategy 

should each firm choose given it does NOT know what the other firm will do?  Should 

each firm advertise or not? 

 

Start with Firm A.  If it advertises, it will get either 100 profit if B also advertises, or 150 

profit if B does not advertise.  Its outcomes are therefore 100 or 150.  But if Firm A 

does not advertise, it will get 60 if Firm B advertises and 100 if Firm B also does not 

advertise.  Its outcomes for not advertising are therefore 60 or 100.  In this case Firm 

A should definitely advertise.  If Firm B advertises, then Firm A will earn 100 if it also 

advertises and only 60 if it does not.  So it earns more profit by advertising.  And if 

Firm B does not advertise, then Firm A will make 150 profit if it does advertise, and 

only 100 if it does not.  In this case, whatever Firm B does, whether it chooses to 

advertise its new film release or not, Firm A will in both cases make more profit if it 

DOES advertise its new film.  Since to advertise is the optimal strategy for Firm A 

whatever Firm B does, we say that to advertise is the Dominant Strategy for Firm A.  

 
1 This example is based on R.S. Pindyck and D.L. Rubinfeld, Microeconomics (Pearson Educational 
International, New Jersey, Seventh Edition, 2009), pp. 482-483.  
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What about Firm B?  Should firm B advertise or not?  Again, it should advertise.  If 

Firm A advertises and Firm B also advertises, Firm B gets $50m profit; but if Firm B 

does not advertise its film it gets no profit at all (top right hand box).  Hence, if Firm A 

advertises, Firm B is better off advertising too.  And if Firm A does not advertise, then 

Firm B will make $80m profit if it advertises, and only $20m if it does not.  Again, 

therefore, Firm B does better if it advertises. Thus, Firm B does better when it 

advertises whatever Firm A does.  For Firm B, too, advertising is the Dominant 

Strategy.   

 

When every player has a Dominant Strategy whatever the other player does, we say 

there is an Equilibrium in Dominant Strategies.  There is a clear determinate 

outcome. In this case: the equilibrium outcome is both firms advertise their new films 

and the payoffs will be $100m profit to Firm A and $50m profit to Firm B.  

 

 

Equilibrium without Dominant Strategy 

 

Situations where BOTH players have a Dominant Strategy are the simplest to model.  

Each player then just follows its dominant strategy which, by definition, doesn’t depend 

on what the other player does.  But clearly one can imagine many situations where 

what is the best strategy for one player to pursue depends on what the other player 

does.  We can show this my amending the payoffs in our advertising example.  Let us 

imagine the payoffs to Firms A and B from advertising and not advertising are as 

follows: 

 

  Firm B 
  Advertise  Don’t Advertise  

Firm A Advertise 
  

100, 50 150, 0 

Don’t Advertise 
  

60, 80 200, 20  

 

Figure 3.  An Advertising Game with One Dominant Strategy 

 

This payoff matrix is the same as the first but with one difference – shown in the bottom 

right-hand corner.  We now assume that if Firm A does not advertise and Firm B also 

does not advertise, then Firm A will make a profit of $200m.  What should Firm A now 

do?   

 

If Firm B advertises, then Firm A should advertise, since if it also advertises it will make 

100, and if it does not it will make only 60.  But if Firm B does NOT advertise, then 

Firm A should also NOT advertise – for if it advertises it makes a profit of 150, and if it 
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does not advertise it makes a profit of 200.  The point here is that Firm A no longer 

has a dominant strategy.  It can no longer say that it should do one thing whatever 

Firm B does.  Its optimal strategy now depends on what Firm B does: if Firm B 

advertises, then Firm A should advertise; but if Firm B does not advertise, then Firm 

A should not advertise either.  Firm A’s optimal strategy depends on what Firm B 

chooses to do.   

 

What should Firm A do?  To answer this, it needs to try and figure out what Firm B is 

most likely to do.  It needs to know what Firm B’s payoff outcomes are and see what 

Firm B’s most likely strategy will be.  In this case, Firm B does have a dominant optimal 

strategy, and that strategy is to advertise its film.  If Firm A advertises, then Firm B will 

make 50 if it also advertises and zero profits if it does not.  So it should advertise.  And 

if Firm A does not advertise, Firm B will make 80 profits if it advertises and only 20 

profits if it does not.  Again, Firm B is better off advertising.  Given this, Firm A can 

conclude that Firm B WILL advertise.  And if Firm B advertises, then the best strategy 

for Firm A will be to advertise as well, for it then earns 100 if it advertises and only 60 

if it does not.  Thus, again, the equilibrium outcome of this game scenario is for both 

firms to advertise.   

 

But note that the two equilibriums are different: in the first the equilibrium emerged 

from both firms following their Dominant Strategy.  In the second example, only Firm 

B followed a dominant strategy, and Firm A’s strategy was a response to that.  Both 

these are examples of Nash Equilibria, but the second is more general than the first.    

 

 

The Nash Equilibrium  

 

When seeking stable or equilibrium strategies in games, we have seen that when both 

players have a Dominant Strategy then this can yield a stable outcome.  But stable 

outcomes are also possible when one or both of the players are not pursuing Dominant 

Strategies.  To model these stable equilibria more generally we use the idea of a Nash 

Equilibrium, put forward by John Nash in 1950.   

 

A Nash Equilibrium seeks to locate the best strategy for Player A to 

pursue in the light of what Player B is likely to pursue, while Player B is 

pursuing their own best strategy given the likely behaviour of Player A.  

When both players arrive at this mutually consistent best strategy 

position they will have no tendency to change these strategies. 

 

The outcome means that A does their best for themselves given what B does, while B 

does the best for themselves given what A does – at the same time.  When this 

outcome is actually realised it follows that neither of the players would regret what they 
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in fact did and neither would want to change their strategy even if they subsequently 

could.   The central insight of the Nash Equilibrium is that each player’s best strategy 

depends on what the other player does and vice versa.  It is thus based on the key 

feature of Game scenarios – namely the interdependence of players in formulating 

strategies.  Formally, this is expressed as: 

 
If bc(r) =c* is the best response for column player given what r does, and  
br(c) = r* is the best response for player row given what player column does, 
then a Nash Equilibrium is the strategy profile (r*, c*) such that: 

 
    c* = bc(r∗)  and  r∗=br(c∗) 
 

A Nash Equilibrium is the logical outcome of many Games and emerges by each 

player thinking through, in advance, what the other player will do and formulating their 

strategy in response – but then the other player will revise their strategy in the light of 

the likely response of the other and so on.  This process of second-guessing the moves 

of each player will tend towards a point where, once reached, neither will want to revise 

their strategy any longer.  Hence the outcome is stable and for this reason is the 

equilibrium solution of the game.   

 

We have seen equilibrium solutions before, but these emerged when one or both 

players had a Dominant Strategy.  Here there may be no dominant strategy for either 

player, but still an equilibrium predictable outcome of the game can be arrived at – 

provided, of course, that both players are rational and have perfect knowledge 

regarding the payoffs to both parties.   

 

To see how a Nash Equilibrium can emerge, consider the following example from 

Avinash Dixit and Barry Nalebuff’s book, The Art of Strategy.1  The case they consider 

is two clothing companies, Rainbow’s End and B.B. Lean, that sell by mail-order.  They 

each set their prices for shirts at the same time and neither knows what price the other 

is setting.  The prices range from $38 to $42, and the profits for each combination of 

prices are set out in the payoff matrix below.    

 

 
1 A.K. Dixit and B.J. Nalebuff, The Art of Strategy (W.W. Norton and Company, New York, 2008).  
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Figure 4.  Payoff Matrix for Two Firms Setting the Price of Shirts 

 

This is a one-off simultaneous game and each player has access to all the information 

in this table.  What price will the companies charge for shirts?   

 

Let’s start with B.B. Lean.  Looking at all the possible payoffs to B.B. Lean, it can be 

seen that the highest possible payoff B.B. Lean can get is 43,260, which occurs when 

it prices at $41 per shirt.  So B.B. Lean might be tempted to charge $41.  But, B.B. 

Lean knows that it is not guaranteed 43,260, because the actual payoff it will get at 

$41 depends what Rainbow’s End will charge.  Now suppose Rainbow’s End suspects 

B.B. Lean will be tempted by the 43,260 payoff at $41.  Well, if Lean does charge $41, 

the best price for Rainbow’s End to charge would then be 40, undercutting Lean by 

$1.  For that will yield 41,600 – the highest payoff Rainbow’s End can get given that 

B.B. Lean goes for $41.  Thus, if Rainbow’s End expects B.B. Lean to charge $41 then 

it will charge $40.  Yet of course, B.B. Lean knows this too!  It knows if it sets $41 then 

Rainbow’s End is likely to set $40.  Now if Rainbow’s End sets $40, then the highest 

payoff B.B. Lean can get is if it sets a price of $40 too.  If it does this, both companies 

get a payoff of $40,000.  Rainbow’s End will expect B.B. Lean to do this because it’s 

the rational thing for Lean to do given Rainbow’s End sets a price of $40.  But note 

that if B.B. Lean does set $40 then there is no reason for Rainbow’s End to revise its 

strategy.  Given Lean does set a price of $40, there is no better payoff for Rainbow’s 

End than the $40,000 it gets from charging $40.  Hence it will stick at $40.  And if 

Rainbow’s End sticks at $40, so will B.B. Lean, since it can’t do better than charge $40 

if Rainbow’s End charges $40.  So, by thinking through what each player is likely to 

do in the light of what the other player is likely to do, the outcome of this game will be 

for both firms to set shirts at $40 in their catalogue.  This, then, is the Nash Equilibrium 

in this game.  
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Indeed, once the catalogues are printed and each party sees that the other charged 

$40 for their shirts, neither would want to change their decision in the light of this 

information.  Rainbow’s End sees that, given that B.B. Lean charged $40, then they 

did the right thing by charging $40 – any other price they could have chosen ($38, $39 

etc) would have yielded them a lower payoff.  They did the right thing to set $40.  And 

the same applies for B.B. Lean: once seeing that Rainbow’s End selected set a price 

of $40, Lean could not have done better than any price other than $40.  Thus, neither 

would want to revise their decision in the future other things being equal.  Again, then, 

the Nash Equilibrium is a stable outcome for this game even if it was played again.   

 

To see that this outcome is the logical one for this game, look at it now from the point 

of view of B.B. Lean.  Lean tries to think what Rainbow’s End will do.  Well, the highest 

payoff for Rainbow’s End is 43,260 and occurs when they charge $41.  Lean sees this 

and therefore decides that if Rainbow’s End charges $41, then they will do best if they 

charge $40.  Rainbow’s End realises B.B. Lean will conclude this, and sees that if B.B. 

Lean charges $40 they will also do best to charge $40.  And so we end up at $40 as 

the mutual Nash Equilibrium again.   

 

Once a Nash Equilibrium is apparent to both players, the game will tend towards that 

outcome.  If B.B. Lean expects Rainbow’s End to select $40, then B.B. Lean will also 

charge $40 since that will yield the best payoff that is then possible and vice versa.  

What is more, although we are dealing with simultaneous one-off games here, a Nash 

Equilibrium is a strategy that no player would want to depart from once they know the 

decision of the other.  So, once a Nash point is arrived at, it will persist if there are 

subsequent plays of the same game since neither player will have an incentive to 

depart from it.   

 

A Nash Equilibrium exists when each player is doing the best it can given the actions 

of the other player.  So, if the two players are Firms, then Firm A is doing the best it 

can given what Firm B is doing, and Firm B is doing the best it can given what Firm A 

is doing.  This outcome is stable in that neither Firm will have an incentive to deviate 

from what it is doing.  Our earlier example of two firms choosing whether or not to 

advertise (Figures 2 and 3) eventuated in a Nash Equilibrium: we saw that for both 

Firms, A and B, the decision to advertise led to their best possible profits, so both 

Firms will advertise and will not revise that decision in the light of the other firm’s 

decision to advertise.   

 

A Dominant Strategy equilibrium is a special case of a Nash Equilibrium.  However, 

the existence of a single Nash Equilibrium is not guaranteed.  A game may have more 

than one Nash Equilibrium, or it may have no Nash Equilibrium at all.   
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How to Locate Nash Equilibria 

  

The following procedure explains how to go about determining which payoffs are Nash 

Equilibria – i.e. outcomes which neither firm will want to deviate from once they have 

happened.1  

 

Imagine two players, Row and Column.  Each player has two possible strategies, A 

and B.  The payoff matrix is as follows: 

 

  Column 
  A B 

Row A 
 

√100, 50 √125, 100√ 

B 
 

50, 100√  75, 75 

 

Figure 5.  Locating Nash Equilibria through Ticks 

 

Remember the payoffs to Row are always given first in each box, the payoffs to 

Column are given second.  

 

To analyse this situation, take each player in turn.  Start with Row.  We need to work 

out what is the best strategy for Row to follow given what Column may do.  So first, if 

Column A pursues strategy A, then Row is best off pursuing A also, since if Row does 

A it will get a payoff of 100, but if it does B then its payoff will be 50.  Consequently, if 

Column does A, Row should do A.  We show this by putting a tick next to Row’s payoff 

of 100 in that case.  Now imagine that Column does strategy B.  In this case again 

Row is best off doing A, for then its payoff will be 125, whereas if it does strategy B 

when Column does B, its payoff is 75.  Hence, we put a tick next to 125 in the top right-

hand box.  This completes our analysis of Rows actions.  

 

Now do the same thing from the point of view of Column.  Assume that Row does 

strategy A. In this case Column will be best off pursuing strategy B, since its payoff 

then will be 100 compared to 50 if it does A.  So put a tick next to 100 for B in the top 

right box.  If, however, Row does strategy B then Column will get a better payoff if it 

does A rather than B.  We therefore put a tick next to 100 in the bottom left-hand box.  

Now look at the payoff table.  Quite simply, any box with two ticks is a Nash 

Equilibrium.  In our example this is the top right-hand box.  This is a Nash Equilibrium 

since this is the combination of strategies to which the game will tend, and once this 

outcome is revealed, neither player would want to revise their decision.   

 
1 C.f. A. Goolsbee, S. Levitt, and C. Syverson, Microeconomics (Macmillan, New York, 2016), p. 471.   
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In practice this Nash Equilibrium might emerge as follows.  Row, for example, needs 

to predict what Column will do.  Given the payoffs available to Column (50 and 100 if 

they choose A, 100 or 75 if they choose B), then Column will do best if they choose B.  

Row expects Column to choose B, in which case Row will do better to choose A over 

B, since if Row does A it will get 125, and if it does B it will get only 75.  It will choose 

A.  And, of course, Column can predict this too.  Column knows Row will choose A, 

and if Row chooses A then Column does best with B, making 100 compared to only 

50 if Column chooses A.  Thus, if Row thinks Column will choose B, Row will choose 

A; and if Column thinks Row will choose A, Column will choose B.  And if Row thinks 

Column will choose B, Row will choose A, in which case Column will choose B, and 

so we end up in the top right-hand box which is the Nash Equilibrium – as predicted.      

Each is doing the best they can given what the other does and will have no incentive 

to change.  Thus, if Row did strategy A and Column also did A, this would not be a 

Nash Equilibrium for Column, since then Column’s payoff would be 50, whereas if it 

shifted to B its payoff would be 100.  Column would NOT be doing the best it could 

given Row’s strategy of A, and if the game were played again Column would not stick 

with A but shift to B.  But if, in this one-off game, Row chose strategy A and Column 

chose strategy B, then when both observed the results neither would, after the event, 

want to change their action.  And this is a Nash Equilibrium, as Hal Varian summarises: 

 

A Nash equilibrium can be interpreted as a pair of expectations about 

each person’s choice such that, when the other person’s choice is 

revealed, neither individual wants to change his behaviour.1    

 

In this example, the combination of Row A and Column B is the only Nash Equilibrium.  

Are there any Dominant Strategies here?  Yes.  For Row, strategy A is the Dominant 

Strategy.  Row will do A whatever B does.  Strategy A is always the right strategy for 

Row whether Column does A or B.  By contrast Column does not have a Dominant 

Strategy: for Column, A is its best strategy if Row chooses B, but B is its best strategy 

if Row chooses A.  So, Column’s strategy depends what Row does, but Row’s best 

strategy does not depend on what Column does.    

 

To get the hang of the method of analysing game payoffs, let us consider a more 

complex example.  In this case there are two grocery stores in a town, Spa and Co-

Op.  Each is faced with the same question: should it leave its store as it is; remodel 

the existing store; or knock the store down and build an entirely new one?  Again, we 

assume that the game is played once only, and that each store announces its decision 

at the same time.  The payoff matrix is as follows: 

 
1 H. Varian, Intermediate Microeconomics (W.W. Norton and Company, New York, Ninth Edition, 2014), 
p. 543.  
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  Spa 

  Build New 
Store 

Remodel 
Existing 
Store 

Leave store 
as it is 

CO-OP  Build New 
Store 

 
200, 200 

 
300, 400 √ 

 
√400, 150 

Remodel 
Existing 
Store 

 
√400, 300 

 
√450, 450 √ 

 
300, 175 

Leave Store 
as it is 

 
150, 300 

 
175, 350 √ 

 
350, 300 

 

Figure 6.  Locating a Nash Equilibrium in Store Design  

 

To make sense of these complex outcomes, apply the tick-box method we used 

above.  

 

We start with Spa.  Imagine first that CO-OP builds a new store.  What is the best thing 

Spa can do in this situation?  Reading across the outcomes for Spa we see that its 

highest payoff is 400 when it remodels its existing store.  So, we tick that outcome.  If 

CO-OP remodels its existing store, we see that the best thing Spa can do is remodel 

its store, which yields a pay-off of 450.  Thus, we tick this.   Now imagine that CO-OP 

leaves its store as it is.  Then the best strategy for Spa is to re-model its existing store, 

which carries a payoff of 350.  Again, then, we tick this.  It can be seen here that, for 

Spa, the best thing it can do whatever CO-OP does is re-model its existing store.  This 

always yields its best outcome whatever CO-OP does.  Hence for Spa, remodelling 

the store is a Dominant Strategy.  

 

Now let’s see what CO-OP should do.  If Spa builds a new store, then looking down 

the column we see that the best thing that CO-OP can do is remodel its existing store, 

since this gives a payoff of 400.  So, we put a tick next to 400 for CO-OP.  What about 

if Spa remodels its existing store?  Then we see that CO-OP’s best option is also to 

remodel its existing store – so give the number 450 a tick. Lastly, if Spa decides to 

leave its store as it is, the best thing CO-OP can do is build a new store, since this 

yields a payoff of 400.  We therefore tick this outcome.   

 

Note that, unlike Spa, CO-OP has no Dominant Strategy.  While, if Spa builds a new 

store or remodels its existing store, CO-OP should remodel its store, if Spa decides to 

leave its store as it is, then CO-OP should build a new store.  What CO-OP does will 

consequently be influenced by what it thinks Spa will do.  There is no one optimal 

strategy it should pursue whatever Spa does.  However, we can see that under no 
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circumstances is it optimal for CO-OP to leave its store as it is.  This is never a best 

payoff whatever Spa does.  We call a strategy that a player will never wish to pursue 

a Dominated Strategy. 

 

Is there a Nash Equilibrium in this game?  Yes there is.  Remember, a Nash 

Equilibrium occurs when both players are doing the best they can given the actions of 

the other.  It is located where a box contains two ticks – and this is the outcome where 

Spa chooses to remodel its store, and CO-OP chooses to do the same thing and 

remodel its store.  This Nash Equilibrium is the determinate outcome to which this 

game will converge providing the players know the various payoffs in advance.  As we 

have seen, for Spa remodelling their store will be their Dominant Strategy – they will 

choose to do this whatever CO-OP does.  Given Spa does, then, remodel its store, 

then for the CO-OP remodelling its own store is the best thing is can do.  We can 

therefore predict that, in this game and with this payoff matrix, both firms will remodel 

their stores.   

 

Finally, to revert to our original example in this section, that of Rainbow’s End and B.B. 

Lean.  In the table, the best strategies for each player given what the other does is 

indicated, not by a tick, but by bold italics.  So, for example, if B.B. Lean chooses a 

price of $42, then Rainbow’s End is best off choosing a price of $41 with a payoff of 

43,260, and this is indicated by the bold italic number in the second square from the 

top on the left.  If Rainbow’s End selects a price of 39, then the best B.B. Lean can do 

is charge a price of $40, yielding a payoff to Lean of 38,400.  And so on.  Only one 

box has best-payoffs for both players and this is the 40,000 payoff box in the centre, 

which is therefore the Nash Equilibrium for this game – as we have already seen.   

This example allows us to consider a technique for simplifying the search for a Nash 

Equilibrium – the technique of elimination of strategies. 

   

 

The Successive Elimination of Strategies  

 

It sometimes happens that a player, when they look at the payoff matrix in a game, will 

see that there are strategies that they should NEVER play, whatever the other player 

does.  As we have noted, these are called Dominated Strategies.  Look again at the 

payoff matrix for the Rainbow’s End and B.B. Lean price setting game. 
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Figure 7.  Payoff Matrix for Two Firms Setting the Price of Shirts 

 

Does B.B. Lean, for example, have any Dominated Strategies it will never want to 

deploy?  Yes.  One such strategy is price 42.  If you look down the column of payoffs 

to Lean if it charges 42, you will see that, for whatever price Rainbow’s End charges, 

Lean will do better if it charges 41 or 40 or 39 than if it charges 42.  In every case the 

payoff to $42 is lower than these three other prices.  We can therefore say that price 

$42 is a dominated strategy that B.B. Lean will never use.  We can thus delete this 

column from the table – it simply isn’t relevant.  The same is true for the price $38.  If 

you look down the column of payoffs at price $38 you will see that the payoffs at this 

price can be beaten by some other price.  For example, price $39 always beats the 

payoff to $38.  So B.B. Lean will never choose price $38 and we can delete this column 

too.   

 

What about Rainbow’s End?  This company knows that Lean will never charge $42 or 

$38.  This means Lean will charge $41, $40, or $39.  Now whichever one Lean 

chooses, Rainbow’s End can always do better if it does not charge $42, since it can 

do better by charging some lower price.  For example, if Lean chooses $41, Rainbow 

will do better than $42 if it charges $41, $40, or $39.  So, Rainbow’s End will never 

choose $42, and so we can delete this row.  The same applies to Rainbow’s End if it 

charges $38, and we can delete this row also.  Hence, by deleting two columns and 

two rows, we end up with the following simplified game matrix.  
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Figure 8.  Simplified Payoff Matrix after Deleting Dominated Strategies 

 

With this simplified payoff matrix, locating the Nash Equilibrium is straightforward.  

Thus, considering Rainbow’s End’s strategy, if B.B. Lean charges $41, the best 

Rainbow’s End can do is charge $40, and so this is figure is highlighted in bold italics.  

If Lean charges $40, the best price for Rainbow is $40, and this is in bold italics.  And 

if Lean charges $39, Rainbow is best off charging $40.  Doing the same for B.B. Lean 

shows that, whatever Rainbow’s End does, Lean is best off charging $40.  The only 

box where both best strategies coincide is the box for $40-$40, and this is the Nash 

Equilibrium, as we have already discovered.   

 

 

Best Response Curves  

 

The results we have been representing through payoff matrices can also be exhibited 

in diagrammatic form through Best Response Curves. The below diagram shows the 

best response curves for Rainbow’s End and B.B. Lean for our above game.  
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Figure 9.  Best Response Curves for the Shirt Price Setting Game 

 

How do these curves work?  Each curve shows the best strategy each player can use 

given what the other player does.  For example, taking B.B. Lean’s Best Response 

curve.  If Rainbow’s End chooses the price $38, the best price B.B. Lean can charge 

is $39.  If Rainbow’s End selects $40, then B.B. Lean should charge $40, and if 

Rainbow’s End charges $42, then Lean should charge $41.  Rainbow End’s Best 

Response curve shows its best price for any given price set by B.B. Lean.1   

 

The virtue of these curves is that they show best response prices for a continuous 

series of alternative prices, whereas the payoff matrix we considered earlier only 

showed particular discrete prices varying by whole dollars.  Again, the Nash 

Equilibrium is apparent at $40 each, where the two Best Response curves intersect.  

At this point each firm is at its best response point given the pricing strategy of the 

other, and there will be no tendency for either firm to diverge from this point.  If the 

price combinations for the two companies’ shirts are either side of the crossing point 

then they will tend to converge towards the equilibrium point where they coincide.  For 

example, if Rainbow’s End’s price is $41, then B.B. Lean’s best response is around 

$40.50; but if B.B. Lean’s price is $40.50, Rainbow’s End’s best price is about $40.25, 

and so we gradually converge on $40 apiece.     

 

 

 

 
1 These two linear lines are generated by the equations:  Lean’s Best Response Price = 24 + (0.4 x 
Rainbow’s Price) and Rainbow’s BR Price = 24 + (0.4 x Lean’s Price).  See Dixit and Nalebuff, The Art 
of Strategy, p. 125.  
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Issues with the Nash Equilibrium  

 

The Nash Equilibrium concept allows us to locate outcomes to which Game situations 

will tend to gravitate, since each player is doing the best they can given the action of 

the other player, so neither will have an incentive to shift their strategy away from that 

position.  Yet this kind of simple Nash Equilibrium is far from resolving all the issues 

even of quite simple game scenarios.  Let us look at a few problems which can 

emerge.  

 

 

Multiple Nash Equilibria  

 

One problem is that a Game might have more than one Nash Equilibrium.  Consider 

the following example.1  There are two cereal producers, Kellogg’s and Nestle.  Two 

new cereal types have just become available – one is called ‘Sweet’ and the other is 

called ‘Crispy’.  Each firm can launch one only.  Should it launch Crispy or Sweet?  

The payoffs are as follows. 

  

  Nestle 

  Crispy  Sweet 

Kellogg  Crispy 
 

-5, -5 √10, 10 √   

Sweet 
  

√10, 10√ -5, -5 

 

Figure 10.  Competing Nash Equilibria  

 

First, we locate the Nash Equilibrium.  Start with Nestle.  If Kellogg’s opt for Crispy 

cereal, then Nestle will make a loss of 5 if it also makes Crispy, but will make profit of 

10 if it makes Sweet.  So Sweet is its best strategy and we tick this outcome.  If Kellogg 

goes for Sweet, then Crispy is the best choice for Nestle, so we tick that outcome.  

Now consider Kellogg.  If Nestle produce Crispy, Kellogg will do best to choose Sweet, 

since then it makes a profit of 10 (bottom left-hand corner).  We hence tick 10.  But if 

Nestle opt for Sweet, then Kellogg is best off going for Crispy, so we tick this. 

  

As can be seen, there are two Nash Equilibriums in this Game.  The top right-hand 

box, with Kellogg Crispy and Nestle Sweet, is one Nash Equilibrium with two ticks; and 

the bottom left-hand box, with Kellogg Sweet and Nestle Crispy, is another Nash 

Equilibrium.  Both are stable equilibria, but we don’t know which will occur.  Indeed, 

even if the firms knew these respective payoffs for each other, we don’t know what 

outcome will occur since each firm won’t know what the other firm will do since the 

 
1 For this example, see Pindyck and Rubinfeld, Microeconomics, pp. 484-485.   
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potential profits in each case are the same.  The actual outcome depends on what the 

other firm does and neither firm knows this before the game is played.   

 

For example, if Nestle decides on Crispy then if Kellogg also goes for Crispy the two 

firms will clash and each will make a loss of -5.  But if Kellogg goes for Sweet then 

Nestle will make 10 profit.  In a one-off game anything is possible here.  Of course, if 

one firm could get a tip-off about what the other is planning, then it can adjust its 

behaviour accordingly and a Nash Equilibrium can result.  Thus, if Kellogg hears that 

Nestle is planning to go with Crispy, it will go with Sweet and vice versa.  Then a stable 

Nash Equilibrium will emerge.  We can see here why the firms would have an incentive 

to collude.  But we are assuming competitive games without collusion.  Similarly, if this 

game were played several times, a Nash Equilibrium might emerge as one firm shifts 

to what the other is not producing.  But we are assuming a one-off game, so this too 

is not possible.   

 

So in this game, even though there is more than one Nash Equilibrium, we cannot 

know whether either will actually occur in a one-off play.  

 

 

Non-Optimal Nash Equilibria – The Prisoner’s Dilemma   

 

A Nash Equilibrium can sometimes yield outcomes that are not Pareto efficient.  This 

means, given the outcome of the Game, it would be possible to move to another set 

of payoffs that left one player better off without making another player worse off.  The 

classic example of this is the game called the Prisoner’s Dilemma – the most famous 

of all Games.  

 

This Game originated at the RAND institute in 1950 when two Game Theorists, Merrill 

Flood and Melvin Dresher, constructed a game in which two players, unable to see or 

communicate with each other, were asked to pick between two strategies – to either 

cooperate with the other player or defect against them.  What made the Game 

interesting was that, if each player followed what was clearly their dominant strategy, 

namely to defect, they would collectively do worse than if they did not follow their 

dominant strategies and informally cooperated instead.  The first two people to play 

the Game were the economist Armen Alchian and the mathematician J.D. Williams.  

In this early form the Game was played for small amounts of money, but shortly 

afterwards, when the Princeton mathematician Albert Tucker was asked to give a talk 

on Game Theory to the Stanford psychology department, he changed the scenario to 

one in which two prisoners were confronted with the option of confessing to a crime or 

staying silent – and this is the form of the Game which is well known today.  

 



24 

 

24 
 
 A Haberdashers’ School Occasional Paper.  All rights reserved. 
 

 

This Game models a situation where two persons who committed a crime together 

have been arrested by the police.  The problem the authorities have is that they have 

very little evidence against the suspects.  They therefore need a confession.  Their 

method for securing a confession is as follows: they hold the prisoners in separate 

cells and make sure they cannot communicate with each other.  They then offer each 

prisoner a deal: if you confess, and the other suspect does not, then you will be set 

free, but the other suspect will get six years.  If both prisoners confess then they will 

both get three years in jail.  But if neither confesses they will get one year each.  The 

point here is that the best outcome for both players together is not to confess – then 

they get one year each.  However, the logic of the Nash Equilibrium for this Game 

pushes them to confess, with the result that they both end up doing three years – 

ending up, in other words, in a position worse than if they both stayed silent.  Why this 

happens can be seen by studying the payoff matrix for this Game.  

 

  Suspect B 

  Confess Not Confess  

Suspect A Confess 
 

√-3, -3√ √0, -6 

Not Confess 
  

-6, 0√ -1, -1 

       

Figure 11.  The Prisoner’s Dilemma  

 

We calculate the Nash Equilibrium as follows.  Take suspect A.  If suspect B 

confesses, then the best thing suspect A can do is confess, since then their payoff is 

a negative 3, representing three years; if B confesses and A does Not Confess, then 

suspect A is looking at 6 years in jail.  So if B confesses, the best thing A can do is 

confess also.  Hence the tick by the payoff -3 in the top left-hand box.  What about if 

suspect B stays silent?  If B does Not Confess, the best thing A can do is Confess.  

Remember if B does not confess and A does, then A gets away scot-free, hence the 

payoff of 0.  If B does Not Confess and A also chooses Not Confess, then A will get a 

year in jail (bottom right-hand corner).  Hence, if B does Not Confess, A should still 

confess, and we place a tick next to 0 in the top right hand box.  Thus, whether suspect 

B confesses or not, suspect A should still Confess.  Hence Confess is A’s Dominant 

Strategy – A should confess whatever B does. 

 

The same reasoning applies to suspect B.  If A confesses, then B should confess since 

then B faces 3 years in jail, compared to 6 years if B does not also confess.  Thus, we 

place a tick next to B’s -3 payoff in the top left-hand box.  If A does Not Confess, then 

B will do better to Confess, since then he will go free, whereas if he stays silent, too, 

he will get a year in jail.  Accordingly, we place a tick next to zero in the bottom left 
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box.  As can be seen, it is the Dominant Strategy of B, just as it is for A, to Confess, 

which means B will Confess whatever A does.   

 

Thus, the police tactic has worked: both the criminals, against whom there was hardly 

any evidence, have both confessed to the crime with the result that they have each 

ended up in jail for three years.  This is a sub-optimal outcome.  If they had both held 

their tongues they would each be doing just one year in jail.  Their mutual best strategy 

was to stay silent; but they have ended up at their mutual worst outcome – three years 

in jail each.  Yet this suboptimal outcome is the Nash Equilibrium for this Game.   This 

means, even when each player finds themselves doing three years in jail instead of a 

possible one, they will still confess as they did.  Given what the other suspect did, each 

suspect did the right thing and would not change their decision even if they could.   

 

For example, given that B did confess, then A would do best to confess, since then A 

gets 3 years in prison – if they had not confessed then they would be looking at 6 

years.  And given that A did in fact confess, B would be glad they confessed also, 

since if they had not then they would be facing 6 years instead of 3.  To reiterate: it 

was the rational Dominant Strategy of BOTH players to Confess, and yet the result of 

this rational action has been to produce a result that is not efficient.  If they had both 

Not Confessed they would BOTH be better off than they are now, since they would 

both be doing 1 year in prison compared to both doing 3.  

 

What drives this outcome is the attempt by each player to minimise the worst possible 

scenario they face.  Take suspect A.  If A keeps silent and B also keeps silent, then 

the worse that can happen is that A will have a year in jail.  But if A keeps silent and B 

in fact confesses, then A will get 6 years in jail.  By confessing A has ensured that the 

worst thing that can happen is three years in jail, and if B does not confess then A 

might even walk free.  Confessing limits the worst outcome for A to three years.  And 

the same is true for B.  If he doesn’t confess then he will get either six years in prison 

or one.  If he confesses he will either go free or do three years.  In either case B limits 

the potential damage by confessing.  This strategy of acting to maximise the minimum 

gain (or in this case limiting the potential loss) is a MaxiMin Strategy.  Each player is 

rationally acting to limit the damage from the situation – they are making the best of a 

bad job, even though by doing so they together ensure that the collective result is 

worse than they could gave got by staying silent.  But staying silent is not the MaxiMin 

strategy for either since it opens them up to the possibility of a MiniMin outcome, where 

they do six years in jail.   

 

Such MaxiMin sub-optimal Nash Equilibria outcomes are common in life.  Their main 

characteristic is that it appears as rational for an individual to do some action which it 

would be irrational if everyone did it.  For example, consider two rival countries 

considering whether to invest in a new, highly destructive (but also very expensive) 
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generation of weapons like the H-bomb.  Considered on its own, each country will 

want to invest in the weapon since, either the other country does not do so, in which 

case it has a huge miliary advantage, or the other country also invests, in which case 

the initial country will be relieved it did so also.  Of course, the other country reasons 

similarly, so both countries build the weapons system.  This is the Nash Equilibrium to 

this game.  But, again, the outcome is not in the best interest of both countries: they 

have spent billions of dollars developing weapons that in effect only cancel each other 

out.  Neither is any safer or stronger as a result.  They would have been better off 

agreeing to NOT develop the weapons in the first place since the defence aspects 

would have been unchanged but they would have saved huge amounts of money.  

The problem remains, however, that each country will see that it will benefit if it 

reneges on the deal and builds the weapon if the other country does not.  For this 

reason arms control agreements have a tendency to break down (precisely because 

they are not Nash Equilibria), and hence have to be monitored very carefully.   

 

Such reasoning is also at the heart of the Free Rider Problem, where rational 

individuals conclude that it is not in their interest to pay for a product or service that 

would have been provided anyway.  It is, for example, always in an individual’s interest 

to ride the subway for free as long as they can get away with it.  Whether you pay for 

your ticket or not, it is always in my interest not to pay for my ticket.  This is my 

Dominant Strategy.  Yet if this is my dominant strategy it is yours also, and everyone 

else’s, so without the threat of enforcement Game Theory would predict that everyone 

will try to travel for free on the subway – even if this means that at the end of the month 

the entire system goes bankrupt and all will be forced to walk through the rain instead 

– a clearly less good outcome for all the travellers.   

 

Prisoner’s Dilemma situations can help us explain the strategic behaviour of 

oligopolistic firms.  Consider two airlines, Ryan Air and EasyJet, who have to decide 

what price to set for tickets on the same route when they do not know what price their 

rivals will set.  The fares are to be announced on the same day.  

A possible payoff matrix showing varying profits is as follows. 

  

  Ryan Air 

  High Fare Low Fare 

EasyJet  High Fare 
 

50, 50  20, 75√ 

Low Fare 
  

√75, 20 √30, 30√ 

 

Figure 12.  A Prisoner’s Dilemma in Oligopolistic Pricing 
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This payoff matrix shows the profits each airline will get for differing price policies.   For 

example, if both firms set a Low price for plane tickets, the profits are 30 each (bottom 

right-hand corner).  But if both set a High price, each get profits of 50.  What price will 

the firms set?   

 

Consider EasyJet.  If Ryan Air sets a High Fare then EasyJet is best off going with 

Low Fare, undercutting Ryan Air and gaining market share, since it then makes 75 

profit.  We indicate this by a tick in the bottom left-hand box.  If Ryan Air instead sets 

Low Fare, then EasyJet is also best off setting Low Fare since then its profits will be 

30 (compared to 20 if it were to set a High fare, when it would lose market share to 

Ryan Air).  So we put a tick next to 30.  As can be seen, for EasyJet the Dominant 

Strategy will be to charge a Low Fare whatever Ryan Air does.   

 

What will Ryan Air do?  If EasyJet sets a High fare, then Ryan Air will make 75 profits 

by setting a Low Fare.  Hence, we put a tick next to 75 in the top right hand corner.  

And if EasyJet sets a Low Fare, Ryan Air is best off matching this and setting a Low 

Fare too.  We place a tick next to 30 in the bottom right-hand box.  So again, for Ryan 

Air, setting a Low Fare is the Dominant strategy – whatever EasyJet does, Ryan Air 

will do best by setting a Low Fare.   

 

Since both airlines have the same Dominant Strategy, to set Low Fares, the result will 

be that both indeed set Low Fares.  And this is the Nash Equilibrium: given what their 

rival did (set a Low Fare) neither will regret their decision to set a Low Fare, for to have 

set a High Fare would have left them exposed and struggling for passengers.  There 

will be no tendency to revise their Low Fare decision.   

 

Yet, as in the Prisoner’s Dilemma example, the outcome is not an optimal one for 

either player.  If they had both set High fares, then each would earn more profit than 

they do by setting Low Fares, and the combined payoff to them both would be 100 as 

against 60.   

 

Thus, Game Theory predicts that, in a non-cooperative situation, an oligopoly industry 

will tend towards low prices and low profits as no firm can risk charging high prices 

and being out competed by its rivals.   

 

Of course, this outcome, while good for consumers, is not good for the firms 

themselves.  The best outcome for both firms will be high prices, for then they will 

both make 50.  One way to get this is by collusion (e.g. if the directors met before 

announcing fares and agree to both go High).  But this is illegal in practice – and also 

violates our assumption of a competitive non-cooperative game.   
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Irrational Behaviour and MaxiMin Strategies  

 

MaxiMin strategies are especially relevant when the other player in a Game scenario 

behaves irrationally, in ways that do not always conduce to their self-interest.  In these 

situations the behaviour of the other player can be unpredictable and then a strategy 

of maximising minimum gains can make good sense.   

 

Take, as an example, two software firms, Firm 1 and Firm 2.  Firm 1 is the market 

leader and has the bigger share of the market.  Each firm is considering whether to 

invest in some new software.  The payoffs are as follows. 

 

  Firm 2 

  Don’t Invest  Invest 

Firm 1 Don’t Invest  
 

√0, 0 -10, 10√ 

Invest 
 

-100, 0 √20, 10√ 

  

Figure 13.  A MaxiMin Strategy when confronted by a risk of a large loss 

 

Start with Firm 1.  If Firm 2 does not invest, then the best thing Firm 1 can do is not 

invest either.  Then its profits don’t change, whereas if it were then to invest it would 

make 100 in losses.  So put a tick next to zero in the top left box.  If Firm 2 does invest, 

then Firm 1 will do best to invest as well (since if it doesn’t it will make 10 in losses).  

So we place a tick next to the 20 in the bottom right box.   

 

Now look at Firm 2.  If Firm 1 doesn’t invest, then Firm 2 will do best to invest.  So put 

a tick by 10 in the top right-hand box.  And if Firm 1 invests in new software, then Firm 

2 will also do best if it invests in new software also and we place a tick by the 10 in the 

bottom right box.  

 

In one sense the outcome of this Game is clear.  It is the Dominant Strategy of Firm 2 

to invest in new software, since whatever Firm 1 does, Firm 2 will do better if it invests.  

If Firm 2 indeed invests, Firm 1 will do best to invest as well since then it will make 20 

as opposed to -10 if it does not invest.  Thus, the outcome will be both will invest and 

this is the Nash Equilibrium.   

 

But suppose Firm 2 doesn’t understand this.  Suppose it doesn’t follow its Dominant 

Strategy to invest and in fact decides not to invest?  Then in this case Firm 2’s profits 

fall by just 10 (compared to if it had invested) and it still breaks even.  But the outcome 

for Firm 1 is terrible: if Firm 1 goes ahead and invests large sums in a new software 

when Firm 2 hasn’t invested at all, then it makes a loss of 100!  If you are Firm 1 this 
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is worrying and if you think that Firm 2 does behave erratically and you can’t be sure 

they will invest, then you might well have to revise your preferred strategy.  The 

strategy yielding the maximum payoff is to invest; we call this the MaxiMax strategy – 

Maximising the Maximum payoff (in this case profits of 20).  But it carries with it the 

risk of a very large loss.  Hence, a risk averse strategy is not to seek the maximum 

gain, but to limit the size of the potential loss – a MaxiMin strategy.  In this case the 

MaxiMin strategy for Firm 1 is Don’t Invest.  While the best that can happen to Firm 1 

is now that it just breaks even with profit of zero, the worst that can happen (if Firm 2 

actually invests) is Firm 1 makes a loss of 10.  This is not great, but it is much less 

than the potential 100 loss if Firm 2 does not invest.   Firm 1 pays a possible price for 

this conservatism: if it had assumed that Firm 2 would follow its Dominant Strategy 

and Invest then Firm 1 would have invested too and the result would have been a profit 

of 20 for Firm 1.  So, by following a MaxiMin strategy Firm 1 is not profit maximising.  

Rather it is loss minimising.  

 

Firm 1’s strategy here has been rather cautious.  Yes, there was a possibility that Firm 

2 would not invest.  But how likely was this, given that Invest was Firm 2’s clear 

Dominant Strategy?  One way for Firm 1 to refine its decision taking in this case would 

be to assign probabilities to Firm 2’s conduct.  

 

 

Maximising the Expected Pay-Off  

 

When selecting Game strategies, the players will often not be sure what the other 

player will do even when the pay-offs are known and they lead to clear Nash Equilibria.  

This uncertainty can be factored into decision taking by forming estimates of the 

probabilities of each course of action by the other player.  Once having done this, a 

player like Firm 1 can act so as to maximise its expected payoff from a Game.  

 

In our example, we have seen that for Firm 2 the Dominant Strategy is to Invest since 

then its profits will be 10 whatever Firm 1 does, whereas if it does not invest it will 

make no extra profit whatever Firm 1 does.  So, if Firm 2 knows these payoffs and is 

rational, it really ought to Invest.  Suppose, therefore, that Firm 1 considers it 90% 

likely that Firm 1 will Invest.  There is then a 10% probability that Firm 2 will go against 

its best interests and Not Invest.  Given this, Firm 1’s expected payoffs for Investing 

are a 90% chance of making 20 and 10% chance of making -100.  Adding these 

together gives: 

 

(0.1)(-100) + (0.9)(20) = 8 

 

Thus, 8 is the expected payoff of Investing given the likelihoods Firm 1 has estimated.  

If it does Not Invest the expected payoffs are: 
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(0.1)(0) + (0.9)(-10) = -9 

 

Clearly, Firm 1 should Invest.  If, on the other hand, Firm 1 thinks there is a 30% 

chance that Firm 2 will go against its own interests and Not Invest, the expected 

payoffs are: 

 

Invest: (0.3)(-100) + (0.7)(20) = -16 

Not Invest: (0.3)(0) + (0.7)(-10) = -7 

 

With a 30% chance of Firm 2 choosing Not to Invest, Firm 1 is best off not investing 

as its likely losses will then be much less.   

 

Thus, what Firm 1 will do in this kind of case depends on the probabilities it assigns to 

Firm 2’s actions, and in a one-off Game these cannot be certain and the outcome will 

always have a degree of uncertainty.   

 

 

Mixed versus Pure Strategies 

 

So far we have assumed that there is, for any given one-off Game, one strategy that 

maximises each player’s payoff.  These optimal strategies are called Pure Strategies.  

However, there are some situations where a Pure Strategy is not an optimal strategy, 

and the player should, in fact, vary their strategy in a random way – deciding what 

strategy to select by, say, tossing a coin.  Such strategies are called Mixed Strategies.   

A classic example of a Mixed Strategy being the best strategy is that of taking of a 

penalty kick.  In this situation a penalty taker is faced with two competing Pure 

Strategies – to shoot the ball to the right of the goal-keeper or to the left (we simplify 

by excluding a shot down the middle).  Equally, the goal-keeper must decide, before 

the penalty is taken, whether to dive to the right or the left.  To model this, imagine 

standing behind the penalty taker looking on to the goal beyond.  The possibilities are 

that the penalty taker shoots to the left, and the goal-keeper also dives to the left – 

and saves the shot; the penalty taker goes left and the goal keeper goes right – then 

there is a goal; the penalty shooter goes right as does the goal keeper – the shot is 

saved; and the penalty taker goes right and the goal keeper goes left, and there is a 

goal.  The payoff matrix is as follows: 
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  Goal-keeper 

  Left  Right  

Shooter  Left 
 

-1, 1 1, -1 

Right 
  

1, -1 -1, 1 

   

Figure 14.  A Penalty Shot Zero Sum Game with no Pure Strategy Nash 

Equilibrium 

 

So, if the shooter and goal-keeper both go left, the payoff to the shooter is -1 (no goal) 

and the payoff to the goal keeper is 1.  But if the shooter goes left and the goal-keeper 

goes right, the payoffs are 1 to the shooter (goal) and -1 to the goalkeeper (no save). 

 

Are there any Dominant Strategies or Nash Equilibria in this Game?  No.  For example, 

suppose the shooter shoots Left and the goal-keeper jumps right.  A goal for the 

shooter!  But this doesn’t mean the shooter should always shoot left.  If the goal-keeper 

had also gone left then there would have been a save and no goal for the shooter.  

And of course, if the shooter always shoots Left then the goalkeeper would soon wise 

up and jump left in future and the shooter would never score again.  Put another way: 

remember a Nash Equilibrium strategy is one that a player would not change even 

once they know what the other player actually does.  So jumping to the right is not a 

Nash Equilibrium for the goal-keeper.  Looking back on his decision he will regret it: I 

should have gone left, he will say.  If in the next penalty the shooter goes left again 

and this time the goal-keeper also goes left, the penalty will be saved.  Now the 

goalkeeper will be happy – but not the shooter.  The shooter will now wish they had 

gone right.  And so on.  The simple fact is that in a zero-sum Game of this type there 

is NO equilibrium pure strategy since there is no outcome satisfactory to both players 

at the same time. 

 

There is, however, an optimal strategy to pursue for both players in this penalty Game.  

This is a Mixed strategy with randomised variation.  One can mix strategies in different 

ratios: so a player could shoot right 70% of the time and left the other 30%.  But if the 

goalkeeper knows that the shooter more often goes right then they will jump right too, 

so this is not a good mixed strategy.  In the penalty-kick Game the best strategy is to 

randomise between left and right in a ratio of 50/50.  A shooter could toss a coin 

between each penalty, going left or right according to what comes up.  And the same 

is true of the goal-keeper.  Assuming all other things equal (strength of shot, aim, ability 

of the goal-keeper) then the goalie will jump the right way 50% of the time and save 

50% of the penalties and vice versa.  And, in fact, studies of penalties in top-flight 

football do show that shooters and goalkeepers mix going left or right or staying in the 
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centre in equal proportions, suggesting that they do follow the suggested randomised 

optimal strategy.1   

 

 

Repeated Simultaneous Games  

 

Thus far we have been considering one-off simultaneous games, where each player 

has to decide a strategy for a once-and-for-all Game.  So, for example, EasyJet and 

Ryan Air had to formulate their pricing behaviour for one particular holiday season.  In 

reality, such scenarios are often repeated.  While airlines must announce their prices 

for this year, next year they will do so again, and the year after, and so on.  We call 

these Repeated Games.  In these cases, actions are taken and payoffs received over 

and over again.  What is the effect of repetition on optimal strategies in Game 

situations? 

 

The basic effect of repetition in Games is to promote cooperative strategies.  This is 

because, with repeated plays, the actors realise that by pursuing their immediate 

perceived gain by defecting, they end up in an outcome that is less good than they 

could have arrived at by cooperating.  Thus, in our Prisoner’s Dilemma case, if the 

same two prisoners were picked up again and again and subjected to the same set of 

alternatives to confess or don’t confess, they will realise that, while to confess seemed 

their Dominant Strategy, it caused them to end up doing three years in prison – 

whereas if they both did NOT confess they would only do one year.   

 

But how to get to this cooperative outcome given that the two prisoners cannot 

communicate?  The answer is – they can communicate by the strategies they select.  

How, in a repeated game, can Player 1 signal to Player 2 that they are willing to 

cooperate?  Quite simply: by not defecting.  After the Game is played, Player 2, who 

maybe did defect, sees that Player 1 did not.  What matters now is how Player 2 

responds to this information.  Of course, Player 2 might think – I’m up against a mug 

here, and I will defect again.  In which case, Player 1 might be forced to prove they 

are not a fool and defect next time also – so they are both back in the poor mutual 

defection outcome.  But as soon as one player realises that the other is signalling that 

they wish to cooperate and reciprocates, then the result can be the emergence of 

cooperation where neither player defects and their joint outcomes are systematically 

better than when they each tried to cheat on the other.   

 

Does this kind of move from defection to cooperation actually happen?  Yes, it seems 

that it does.  The most famous study of this process was undertaken by Robert Axelrod 

who set up a competition between computer programmers to design strategies to 

 
1 C.f. Goolsbee et. al., Microeconomics, pp. 476-7.  
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follow when confronted by a simple ‘Prisoner’s Dilemma’ type Game.1  Let’s reframe 

the Game into an economic pricing problem.  Each year Firm 1 and Firm 2 have to 

announce their prices.  They can either price High or Low, and the payoffs are as 

follows.  

 

  Firm 2 

  Low Price High Price  

Firm 1 Low Price 
 

10, 10 100, -50 

High Price 
  

-50, 100 50, 50 

 

Figure 15.  Learning to Cooperate in a Reiterated Simultaneous Game       

 

We are familiar with this kind of payoff matrix.  As we have seen, the Nash Equilibrium 

is for both firms to charge a Low Price.  But this is only if the Game is played once.  If 

it is played multiple times it is in the long-run mutual interest of the firms to set a High 

Price – which becomes, in effect, the equilibrium.  What Axelrod found is that, if this 

Game is played over and over again, the most successful computer programme was 

that which led to the mutual High Price solution and that the optimal strategy that yields 

this outcome is Tit-For-Tat (TFT).  This strategy was submitted by the Game Theorist 

and mathematician Anatol Rapoport.  Tit-For-Tat works on the following simple rule: 

always begin by cooperating, then in each subsequent play do what the other player 

did in their last play.2  So, if Firm 1 goes Low in the first move, then Firm 2 will go Low 

in the second play.  But if Firm 1 goes High, then Firm 2 will go High next move and 

so on.   

 

You might think they will go back and forth from High to Low indefinitely.  But both 

players know that if they do this they will tend towards the poor-performing mutual 

defection outcome we studied earlier.  What tends to happen is Firm 1 charges a high 

price.  Firm 2 maybe defects and goes low.  Firm 1 immediately responds by cutting 

its price, effectively punishing Firm 2 for going low.  Firm 2 sees this and goes High 

next round.  Firm 1 decides to give Firm 2 another chance to cooperate (this is called 

being nice) and go High.  So now both have gone High.  Gradually this will settle down 

to be the most common outcome.  Whenever either Firm defects and goes Low, the 

other immediately responds and punishes by going Low also next round.  In the long-

run, as the Game is played over and over, both players tend towards the cooperate 

High Price strategy.  Thus, Axelrod found that the computer programme Tit-For-Tat 

had the highest overall payoff at the end of the tournament.  It beat all other strategies. 

 

 
1 R. Axelrod, The Evolution of Cooperation (Basic Books, New York, 1984) 
2 Ibid., p. 13.  
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This tendency towards cooperation in reiterated games is useful for the understanding 

of oligopoly behaviour.  In oligopolistic market structures we can never be sure how 

firms will behave in response to their expectations of the behaviour of other firms.  In 

a one-off game such as the price-setting problem of Firms 1 and 2 we would predict 

that the firms would compete and seek to undercut each other by charging low prices.  

But if the firms interact on a continuous basis and value future as well as current 

returns, then we would predict a tendency to tacit collusion with each charging high 

rather than low prices going forward.  The contrasting outcomes of these two 

strategies are shown below.    

  

Payoff   

 

 

 

 

 

 

 

 

 

 

 

 

  1 2 3 4 5 6 7 Time Period  

 

Figure 16.  The Higher long-run payoffs to Cooperation  

 

In the Time Period 1 a given firm, like Firm 1, will gain a higher payoff by defecting 

than it would by cooperating.  But if it continually defects it will receive only the lower 

payoff line.  If it cooperates in setting higher prices it will make better returns in the 

long run.  Yet this result may always break down: at any given moment in time a firm 

can make more by defecting – but suddenly cutting price and initiating a price war.  

But unless, by so doing, it is able to either remove a competitor or significantly expand 

its share of the market, it is likely to lock all firms in a cycle of low prices to the mutual 

loss of all firms.  On balance, Game Theory predicts that oligopolistic firms will 

cooperate rather than compete with each other since this will yield higher payoffs in 

the long run to all parties.   

 

Tit-For-Tat is a widespread strategy in society.  An example, studied by Tony 

Ashworth, was the behaviour of front-line soldiers in World War One.  Soldiers of 

opposing forces confronted each other for prolonged periods across fixed trench 

systems.  The uncooperative-defect strategy would have seen them blast and fire at 

Payoff from 

cooperating 

Payoff from 

Defecting 
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one another non-stop in a race to the bottom right-hand corner of a typical Prisoner’s 

Dilemma game.  But this, they soon discovered, was in the interest of neither.  Instead, 

the troops learned to informally cooperate.  Thus, when sending out patrols at night 

they took care not to encounter rival patrols from the enemy.  When conducting artillery 

fire they would desist during meal-times or avoid hitting hospital tents or supply roads 

– since as one British soldier commented at the time: ‘It would be child’s play to shell 

the road behind the enemy’s trenches … but on the whole there is silence.  After all, if 

you prevent your enemy drawing his rations, his remedy is simple: he will prevent you 

from drawing yours’.1  Rifle fire had a habit of going over the heads of the enemy.  Of 

course, this tacit collusion infuriated the generals, and one solution was to continually 

re-deploy troops along the front so as to break the habits of reiterated interaction.  So 

just when one artillery battalion had learned the timings of lunch, another would arrive 

and bombard during this time, breaking the informal cooperation and sparking a new 

wave of Tit-For-Tat.2       

 

 

Sequential Games 

 

Thus far we have been dealing with Simultaneous Games, where each player 

announces their move at the same time.  But it is quite possible that one player makes 

its move only after seeing what the other player has done – so that Easy Jet only fixes 

its prices after having seen what prices Ryan Air has set.  Such Games, where one 

player moves first and other players observe their move before formulating their move, 

are known as Sequential Games.   

 

To model such Games we no longer use payoff matrices: we use, instead, a Decision 

Tree or Extensive Form.  What these allow us to do is plot unfolding actions over 

time. So, now, we can see how the actions of player A impact on the options of player 

B and so how player B is likely to respond to the actions of A, and this in turn will 

influence how A behaves in the first place.  We can put this more strongly: when 

deciding what action to take, player A must consider how player B is likely to act 

according to the various possibilities that arise when A takes various courses of action.  

Player B’s responses will determine the payoffs to each of Player A’s initial moves.  

Thus, once player A has worked out what B is likely to do, Player A will then act in the 

light of this information.  This is called Backward Induction.  In essence, what a player 

must do is sketch out different scenarios as to how the Game will play out; work out 

which outcome yields them the highest payoff; and then reason back to decide which 

 
1 Quoted ibid., p. 79.  
2 T. Ashworth, Trench Warfare: The Live and Let Live System (Holmes and Meier, New York, 1980); 
R.H. Frank, Microeconomics and Behaviour (McGraw-Hill, New York, Eighth Edition, 2010), pp. 420-
421; Axelrod, Evolution of Cooperation, Chapter 4. 
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action they should initially take.  Only once having played out the Game moves 

theoretically can an initiating player know what move to actually take.   

 

Dixit and Nalebuff introduce the idea with a simple example.  Many will be familiar with 

the Peanuts cartoon strip where Lucy offers to hold an American football for Charlie 

Brown to kick.  Charlie Brown must decide whether to accept Lucy’s offer or not.   

 
 

Of course, Charlie Brown accepts the offer every time, and every time he ends up on 

his back.  That he suffers this fate arises out of his failure to carry out Backward 

Induction from the future likely actions of Lucy.  What Charlie Brown needs to do is 

ask himself the following question: if I opt to take up the offer of the kick, what will Lucy 

do?  Lucy then has two options: either she can hold the ball steady and let me kick it; 

or she can move the ball away at the last moment and watch me fall flat on my back.  

Which is she likely to do?  Everything suggests that she will swipe the ball away.  Given 

this expectation of Lucy’s behaviour, what should Charlie Brown do?  Obviously, he 

should not take up the offer and walk away.  Alas, Charlie Brown doesn’t reason back 

in this way from likely outcomes and the result is he takes up the offer – and of course, 

he ends up on his back!  This sequence of events can be illustrated through a Decision 

Tree as follows.  
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Figure 17.  The Extensive Form of Charlie Brown’s Kick Dilemma  

 

As can be seen, Charlie Brown can either Accept or Reject Lucy’s offer.  If he Accepts, 

then Lucy has the choice of moving the ball away or letting Charlie kick it.  Reflecting 

on her choice, Charlie ought to conclude that it is most likely that she will take the ball 

away – which is why this is shown with a bold line.  In which case, Charlie’s choice, 

reasoning backwards, is between: have the ball taken away and end up on his back; 

or Reject the offer and walk away.  While ‘Let Charlie kick’ was a possible outcome, it 

was never likely to happen and so Charlie Brown should have discounted it.  In the 

story that is the option he is tempted by – but as the decision tree shows, this is 

irrational.   

 

Let us consider a more elaborate example.1  Imagine two cinema companies, Warner 

Brothers and Disney, each of which has a new big film to release in a given year.  

When should each release their big new film?  We assume there are three possible 

dates – March, May, and December.  We first present the Game situation as a normal 

form payoff matrix.  

 

  Disney’s Opening Date 

   May  December  March  

Warner Bros 
Opening Date 

May 
 

50, 50 √300, 200√ √300, 100 

December 
  

√200, 300√ 0, 0  200, 100  

March 
  

100, 300√ 100, 200 -50, -50  

 

Figure 18.  Normal Form Payoff Matrix for Simultaneous Film Decision  

 

 
1 This example is taken from Goolsbee et. al, Microeconomics, pp. 485-488.  
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The payoffs here are profits in millions of dollars. 

  

Consider this Game first as a Simultaneous one.  Is there a Nash Equilibrium?  As 

before we use our tick-check technique.  So, begin with Warner Bros.  If Disney opens 

its film in May, then Warner Bros payoffs are 50 in May, 200 in December, and 100 in 

March.  Since the December payoff is highest, Warner Bros should open in December 

if Disney chooses May, so we put a tick next to 200 in December.  If Disney opens in 

December, then Warner Bros is best off opening in May, so we put a tick by 300, and 

so on.  Thus apportioning our ticks, we can see that there are two Nash Equilibria in 

this Game – with Warner Bros opening their film in May and Disney in December; or 

with Warner Bros opening theirs in December and Disney in May.  We cannot be sure 

which equilibrium will emerge, but the outcome makes a difference: both Warner Bros 

and Disney do best if they open in May, but not if they both open in May!  

We now plot the same figures in the form of a decision tree.   

 

 
 

Figure 19.  Extensive Form of the Film Opening Game 

 

In this example, we assume that Warner Brothers gets to choose its release date first.  

Before it chooses the date, it runs through the different scenarios.  Remember we 

assume that both players know all the data in this decision tree: they both know all the 

possible payoffs guiding the various decisions.  The payoffs to Warner Bros are in red, 

and the payoffs to Disney are in blue.   

 

First Warner Bros asks: if I choose May for the film, what will Disney do?  Disney are 

now deciding at node B between May, December, and March.  If Warner Bros release 
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in May, Disney do best ($200 million) to release in December.  Hence we tick this 

December choice for Disney.  So: Warner Bros knows that if it releases in May, Disney 

will release in December, and in this case, Warner Bros will make $300 million.  Next 

Warner Bros asks: what happens if I open my film in December?  Then Disney will 

choose May and we put a tick next to this outcome for Disney ($300m).   So if Warner 

Bros go with December, Disney will go with May.  Finally, if Warner Bros open in 

March, then Disney, choosing at node D, will opt for May, yielding them $300, which 

we tick.  Thus, if Warner Bros opens in March, Disney will open in May.   

 

What, then, will Warner Bros actually choose?  In effect, it faces three possible 

combinations with Disney: May-December; December-May; March-May.  Looking at 

each of these likely outcomes, which is best for Warner Bros?  Clearly, its best 

outcome is to go with the May-December combination, for then its payoff is $300m, 

compared to $200m and $100m.  Reasoning back from these outcomes, it is apparent 

that May is Warner Bros best choice.  Thus, Warner Bros opens in May and Disney 

delays its film to December.  This is the outcome of the Game.   

 

There are three things to note about this outcome: 

1. It is a Nash Equilibrium.  It is the only outcome to be ticked as a best decision 

for both players.  And neither player would revise their decision once the game 

is played.  Warner Bros would not revise their decision from a May launch, and 

Disney, given Warner Bros May launch, would not change their release date 

from December.  Each player is doing the best that they can. 

2. Where the Simultaneous version of the Game had two possible outcomes, the 

Sequential version has yielded just one. 

3. Of the two possible Nash Equilibria, the one that has emerged is more 

favourable to Warner Bros.  They earn $300m by launching in May, compared 

to $200m if they had launched in December.  This result is the consequence of 

a First Mover Advantage.  By choosing strategies first, Warner Bros is able to 

shift the outcome of the game to their advantage.  This is commonly true – 

though not a universal rule. 

A useful way to simplify such decision trees is to prune away branches that simply 

won’t be relevant.  Looking at node B, we can see that Disney will never choose May 

or March, so we can eliminate those branches.  At node C, Disney will not select 

December or March, and at node D, Disney will not select December or March – so 

these options can be deleted.  We thus end up with a simplified decision tree which is 

easier to navigate.  
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 Warner Bros A  

     

 

 

 

 

Figure 20.  Simplified Decision Tree after ‘Pruning’ of Dominated Strategies 

 

By simplifying the decision tree in this way, and beginning with Disney’s decisions, we 

see that Warner Bros just has three options to consider – and by looking down the 

possible payoffs for Warner Bros, it is apparent that the first 300-200 payoff 

combination is the best for them and so they will choose May.   

 

 

Strategic Moves and Credible Commitment 

 

Thus far we have assumed that the payoffs in any Game are given to the players and 

they formulate their actions in the light of them.  However, it is possible for players to 

make strategic moves to shift the payoffs in ways that further their interests.1  One 

way is to make side payments.  For example, suppose one player benefits much 

more from one payoff combination, while for the other player there is little to choose 

between two outcomes.  Then the first player, who is set to gain much more, might 

make a side payment (in effect a bribe) to the other player to shift the payoffs towards 

the combination of strategies that best suits them.  Provided the size of the bribe 

necessary is less than the differential advantage they derive from the preferred 

outcome, both players will be better-off and a new equilibrium is likely. 

 

Another strategic move a player can make is to shape the behaviour of the other player 

in ways that favours the interests of the initial player.  One way to do this is to make a 

Credible Commitment to a certain course of action.  An example of this is in the 

Game of Chicken.  This game, apparently once popular with American youths, 

involves two cars driving head on towards each other.  The first person to swerve out 

of the way of the incoming car is a ‘chicken’ and loses the game, the other player 

 
1 The concept of Strategic Moves was developed by Thomas Schelling in his The Strategy of Conflict 
(Oxford University Press, New York, 1963). 
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gaining the credibility of being braver.  Of course, if neither player swerves then both 

die.  The payoffs to this Game can be represented as follows.  

 

  Driver 2 

  Swerve Straight  

Driver 1 Swerve 
 

2, 2 √1, 3√  

Straight 
  

√3, 1√ 0, 0 

 

Figure 21.  The Game of Chicken 

 

In this Game, the highest single payoff to each driver is 3, which occurs when they 

keep driving straight and the other driver swerves first.  The second highest payoff is 

2, and occurs when both swerve simultaneously – then it’s an honourable draw and 

neither is the chicken loser.  The third highest payoff is 1, when a player swerves first: 

yes this player is ‘chicken’, but at least they live to tell the tale.  The worst outcome for 

both players is 0, which happens when neither swerves and both die. 

   

There are two Nash Equilibria in this Game – the bottom left-hand box and the upper 

right-hand box.  Consider Driver 1.  If Driver 2 swerves, then Driver 1 will be best off 

driving straight as then they will win the game.  And if Driver 2 goes straight, Driver 1 

should swerve as then they at least live.  And if Driver 1 swerves, Driver 2 is best off 

going straight; while if Driver 1 goes straight, Driver 2 ought to swerve.   

 

The problem here is we can’t predict what will actually happen.  If Driver 2 thinks that 

Driver 1 will swerve, then Driver 2 is best off driving straight.  This is the top right Nash 

Equilibrium.  Unfortunately, Driver 1 might think that Driver 2 will swerve, so they will 

go straight, potentially yielding the bottom left Nash Equilibrium.  But if both do this 

then they both go straight and both end up dead.   

 

How ought a driver play this Game and win?  A useful strategic move is to make a 

credible commitment to driving straight.  This is sometimes called the ‘madman 

theory’.  Thus, take Driver 1.  To win the game he needs to convince Driver 2 that he 

is totally committed to driving straight.  If Driver 1 can make Driver 2 believe that, 

whatever happens, he will drive straight even at risk of death, then Driver 2 will be 

much more likely to swerve.  He might do this by arriving at the road track speaking 

with bravado about his preparedness to die.  He might pretend drunkenness.  He might 

lift his hands from the steering wheel, and so forth.  In this way, by showing an irrational 

willingness to risk death for a game, Driver 2 might be so scared that he will swerve in 

order not to be destroyed by such a mad rival.  In which case, Driver 1 secures the 

result he wanted – even if it was all a bluff.   
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It is easy to see how such aggressive posturing to ensure that an opponent believes 

that a player is prepared to play a Game with reckless disregard for negative outcomes 

might be a useful tactic in war: when two countries possess nuclear weapons, for 

example, the country that is able to convince the other that it will actually use them 

might well achieve its demands by forcing its adversary to back down.  The Cuban 

Missiles crisis of 1962 has often been seen in this light, with both America and Russia 

seemingly being prepared to launch nuclear war over the stationing of nuclear 

weapons in Cuba.  In this case it might be argued that the American threat was more 

credible, since they had more at stake over the issue, and Russia blinked first and 

swerved to avoid Armageddon – though this does not mean that the USA would 

actually have launched nuclear war over the Russian bases in Cuba.  It was enough 

that the Soviets thought they might.  

 

 

Credible Commitment and the First Mover Question  

 

This use of Credible Commitment can solve a problem that we left unresolved earlier 

when discussing the outcome of the decision tree regarding the release dates of new 

films by Warner Brothers and Disney.  We found there that there was a first mover 

advantage to Warner Brothers: because Warner Brothers announced the date of their 

film first they were able to secure the more lucrative May slot, leaving Disney with the 

less lucrative December date.  But if Disney had gone first and opened in May, then 

Warner Brothers would have had the less lucrative pay off.  What decides who in fact 

goes first and gets the advantage? 

 

Credible Commitment can answer this question.  Suppose Warner Brothers is 

resolved to open in May since this yields the highest payoff – namely $300 million, 

with Disney opening in December and making $200 million.  The below matrix provides 

a simplified set of payoffs to this Game.   

 

  Disney’s Opening Date 

  May  December  

Warner Bros 
Opening Date  

May 
 

50, 50 √300, 200√ 

December 
  

√200, 300√ 0, 0 

 

Figure 22.  A Simplified Matrix of the Film opening Game   

 

Figure 22 is a revised version of the payoff matrix we considered in Figure 18.  All we 

have done is remove the March option since, in fact, neither player wanted to open in 

March.  March was a Dominated Strategy and so can be removed.  In this revised 
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form, it can be seen that each cinema would prefer to open in May.  The May-

December combination characterises both Nash Equilibria.  If Disney opens in May, 

then Warner Brothers will be pushed to December and Disney makes $300m and 

Warner Brothers make $200 million.  Alternatively, if Warner Brothers opens in May 

they get $300m, and Disney will be pushed to December, earning $200m.  The best 

outcome for each is to lead with May.  One can see that this is similar to the Game of 

Chicken.  Who will blink first?  If neither of them blink and they both open in May, then 

their profits will be only $50.  A bad outcome for both.  

 

Just as the scenario is similar to Chicken, so is the best strategy.  If Warner Brothers 

want to get the May slot then they must convince Disney that they are committed and 

determined to open in May whatever Disney does.  If they can convince Disney that 

they are in earnest about opening in May, then Disney will back down, preferring a 

$200 million payoff to a $50 million.  How can Warner Brothers do this?  One method 

is to spend money in ways that commit it to a May opening and which will be wasted 

if it opens in December.  It might take out a big advertising campaign announcing its 

new film will release in May.  It can buy in promotional merchandise linked to a May 

opening.  It can place orders for extra popcorn which will go off if not eaten in May and 

so on.  

 

How much must Warner Brothers stand to lose if the film opens in December to make 

its threat credible?  The answer is – it must potentially lose a minimum of $151 million.  

Why?  The reason is simple.  If Warner Brothers engages in spending and actions that 

sum to $151 million if the film doesn’t open in May and in fact opens in December, 

then it will have changed its own payoffs from the Game.  It will reduce by $151 million 

its payoffs from opening in December.  The payoff matrix then becomes as follows.  

 

 

  Disney’s Opening Date 

  May December  

Warner Brothers 
Opening Date  

May 
 

50, 50 300, 200 

December 
  

(200-151) = 49, 
300 

(0-151) = -151, 0 

 

Figure 23.  Revised Payoffs caused by Warner Bros Committing spending to 

May 

 

The top row of the matrix, corresponding to a Warner Brothers opening in May, stays 

the same.  What has changed is the lower December row for Warner Brothers.  As 

can be seen, the old payoffs to Warner Brothers to opening in December have been 

reduced from $200 and $0 to £49 and -$151.  This is because, if Warner Brothers 



44 

 

44 
 
 A Haberdashers’ School Occasional Paper.  All rights reserved. 
 

 

open in December, the $151 million they spend advertising and promoting their film 

for a May release will have been lost.  Quite simply, Warner Brothers have tied their 

own hands.  They have made it clear to Disney that, for them, a December opening is 

a Dominated Strategy – they will NEVER open their film in December whatever Disney 

does.  So: while Disney would do best if they opened in May and Warner Brothers 

opened in December, Warner Brothers have made it clear that they are opening in 

May whatever Disney does, so Disney, to avoid the disaster of going head to head 

with Warner Brothers by opening in May and earning only $50 million profit, will 

‘swerve first’ and opt for December, when they will make $200 million, while Warner 

Brothers will make $300 million – minus any costs it incurs in its Credible Commitment 

strategy.  Provided those costs are less than $100 m (which is quite possible – for 

example the extra popcorn they bought up will now hopefully be sold) then Warner 

Brothers will make a net gain by intimidating Disney and securing first-mover 

advantage.     

 

 

Credible Commitment and Barriers to Entry 

 

The concept of Credible Commitment can be used in economics to help understand 

the phenomena of Barriers to Entry in Monopoly or Oligopolistic markets.  Imagine a 

monopoly firm which wants to dissuade a rival from breaking into its market.  One way 

it can do this is to threaten a price war if a new firm tries to enter – thereby hopefully 

dissuading the new firm from even trying.  The problem here is that a price-war can 

easily damage the incumbent firm, so the potential new entrant asks: will the monopoly 

firm actually embark upon a price war, or is it just bluffing?  If the threat of the price 

war is not credible, the new firm might well decide to go ahead and enter, the monopoly 

then facing a situation where it will lose its monopoly position and be forced to accept 

long-term reduced profits.  As in our Warner Brothers example, the monopoly needs 

to make its threat to launch a price war credible so the rival is scared off, and it can do 

this by shifting its own payoffs in the game so that it will be worse off if it doesn’t initiate 

a price war.  

 

Goolsbee et. al. show how this might work.  They take a situation where Apple is the 

only maker of a tablet computer.  Samsung are considering whether to try and break 

into this market.  The initial payoffs are represented in the following decision tree.   
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Figure 24.  Extensive Form for Entrance Decision Game   

 

Figure 24 depicts the choice facing Samsung: should it enter the tablet market or not?  

The figures are billions of dollars.  If Samsung does not enter the market then it follows 

the Don’t Enter branch and its profits are zero and Apple’s profits remain at $2 billion 

per annum.  Now suppose Samsung does enter.  We move to node B, and Apple must 

now choose: should it Fight and initiate a price war or Don’t Fight and accept Samsung 

in the market?  If it Fights, then Samsung will make a loss of $ 0.5 billion.  This should 

dissuade Samsung from entering.  But, in Fighting, Apple has reduced its own profits 

to $0.8 billion – compared to the $2 billion it was making when it was a Monopoly.  

More important, if Apple Fights its profits of $0.8 billion are less than the $1 billion it 

would make if it just accepted Samsung in the market.  So, while Apple does best if 

Samsung does not enter, if Samsung does enter then Apple will do best if it does NOT 

Fight.  And if Apple does not fight, then Samsung will make $0.5 billion profit.  

Reasoning back from these outcomes, Samsung will deduce that Apple won’t actually 

fight and therefore the best strategy for Samsung is to enter the market.  The result – 

Samsung enters and Apple does not fight – is the Nash Equilibrium for this Game.   

 

The problem Apple has in this scenario is convincing Samsung that its threat to initiate 

a price war is credible, for if Samsung is convinced Apple will fight then Samsung is 

best not entering at all.  As in our Warner Brothers example, Apple needs to shift the 

terms of its payoffs in this Game so that Fight becomes its Dominant Strategy if 

Samsung enters.  One way Apple can do this is by building up excess capacity by 

investing in extra factories.  If Apple does this, and carries extra capacity and produces 

more output, then its price and profits are likely to fall.  As can be seen in the below 
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revised payoff diagram, if Samsung does not enter and Apple remains a monopoly it 

will make $1.2 billion instead of the previous $2 billion.  More significantly, it cuts the 

profits it will receive if it does Not Fight Samsung from $1 billion to $0.6 billion.  The 

reason this is so important is that Apple will now make lower profits if it accepts 

Samsung in the market ($0.6 billion) than it would if it Fights Samsung ($0.8 billion).  

Hence, at decision point B, Apple can be expected to Fight and Samsung now knows 

this. 

  

 
 

Figure 25.  Revised Payoffs from the Samsung/Apple Game   

 

We are assuming that the profit to Apple in the event of a price war remains at $0.8 

billion – it hasn’t fallen because, if there is a price war, then Apple will need the extra 

capacity to manufacture greater amounts at a lower price.  The effect, therefore, of 

investing in more plant has been to signal to Samsung that Apple is in earnest about 

responding to an incursion with a price war.  If Samsung enters the industry Apple will 

fight, and if Apple fights, Samsung will make a loss – and so might well be dissuaded 

from entering.  Working back along the decision tree, Samsung will decide Don’t Enter 

and we end up at the lower branch outcome of zero profits for Samsung and $1.2 

billion for Apple.  This is the Nash Equilibrium: neither player will revise their strategy 

in the light of this outcome.   

 

Of course, this outcome is not ideal for Apple.  Where they used to make a $2 billion 

profit as a monopoly without challengers, they are now making only £1.2 billion due to 
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the cost of extra capacity.  In effect, they have had to take a profit reduction of $0.8 

billion for the privilege of remaining a monopolist in the marketing of tablets.  But this 

trade-off is rational: if they had not been able to stop Samsung entering then their profit 

would have been just $1 billion, as shown in the previous decision tree.  So, even 

despite the cost of the extra capacity, they are $0.2 billion better off than they would 

have been.  Their strategy has been rational.  This is a Game Theory statement of the 

Limit Price strategy for dissuading entrants many students will be familiar with.   

 

 

Some Economic Applications of Game Theory 

 
Game Theory is a very large subject and we have only sketched, here, some of the 

basic ideas.  To conclude, we shall consider some applications of Game Theory to 

economics.  Of all the academic disciplines, economics has made the most use of 

Game Theory, the reason being that the basic assumption of Game Theory – that 

strategic goal-seeking decision takers formulate strategies in the light of what other 

goal-seeking actors are doing or expected to do – applies to many situations in 

economic behaviour.  Indeed, the first major study of Game Theory by Von Neumann 

and Morgenstern was explicitly formulated in the context of economics.  In fact, 

economists had already developed some of the ideas of Game Theory, including the 

Nash Equilibrium, the basic concept having been present in economics since at least 

the 1830s.  It therefore makes sense to consider some economic applications of Game 

Theory.   

 

Game Theory’s most direct application to economics occurs in the theory of 

Oligopoly.  This is to be expected.  Oligopoly theory studies the behaviour of a small 

number of firms (ranging from two to about ten) when those firms respond to the 

expected behaviour of the other rival firms when setting price, output, product design, 

advertising campaigns, and so on.  Since the firms are interdependent, with the 

reactions of each firm to the decisions of another shaping the payoffs to all, it is 

apparent that this is a classic Game Theory scenario.  And, of course, many of the 

examples of Games we have considered have basically been oligopolistic ones – such 

as decisions about pricing and advertising, or launch dates for films or commitments 

to undertake price wars and so on.    
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Some Applications of Game Theory to Oligopoly  

 

 

The Cournot Model of Duopoly 

 

In 1838 the French mathematician, Augustin Cournot, presented a theory of the output 

decision of two rival firms that produce the whole output of an industry.  This situation, 

where two firms dominant an entire market, is a special case of Oligopoly called 

Duopoly.  It turns out that Cournot’s solution was the first discovery of the concept of 

a Nash Equilibrium, so his model remains important to this day.  

 

The model assumes two firms producing identical products with equal and constant 

Marginal Costs of production (Cournot in fact considered two firms producing bottled 

mineral water).  The case Cournot considered is that of a Simultaneous Game of the 

kind we considered above: namely, each firm must decide how much output to 

produce given that each firm makes the decision at the same time and does not know 

for sure how much the other will produce.  Clearly, what each firm decides will impact 

on the other firm, and their combined choices will impact on each other as their output 

decisions will help to determine the total output (and hence price) of the industry.  

 

Cournot assumed that, when each firm came to set its output, it took the output of the 

other firm as given and fixed at some level.  In other words, Firm 1 will decide how 

much output to produce in the light of what it assumes Firm 2 will produce.  This means 

that of the total market demand for the product Q, Firm 2 will produce Q2, leaving Q1 

to be produced by Firm 1, where Q1 + Q2 = Q, and Q1 = Q – Q2.  The effect of this is 

shown in the below diagram.  
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Figure 26.  The Cournot Model of Duopoly1  

 

In this diagram the total market demand for the good (e.g. mineral water) is shown by 

the upper blue line D1(0).  This is the Total Demand for the product and slopes down 

from left to right since more is bought the lower the price.  The Marginal Revenue line 

corresponding to this market Demand (Average Revenue) line is MR1(0).  The 

Marginal Cost line shows MC constant at MC1.  If this industry were a monopoly, with 

just one firm, it would produce where MC=MR at output 50.  

 

Now suppose Firm 1 assumes that Firm 2 will produce zero output.  In this case the 

demand curve to Firm 1 will be the demand curve of the industry and Firm 1 will be, in 

effect, a monopoly producing 50 units where MC=MR.  So, if Firm 2 is expected to 

produce zero, Firm 1 will produce 50 units.   

 

Assume, next, that Firm 1 expects Firm 2 to produce 50 units.  The effect of this is to 

reduce the demand for the product available to Firm 1 by 50 units at all prices.  The 

demand curve facing Firm 1 therefore shifts to the left to D1(50), where the horizontal 

distance between the total market demand curve D1(0) and the new demand curve to 

Firm 1, D1(50), is 50 units.  The Marginal Revenue curve associated with this new 

Demand=AR curve is MR1(50).  Since Firm 1 is profit maximising, it sets output at 

 
1 This diagram is taken from Pindyck and Rubinfeld, Microeconomics, p. 451.  
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MC=MR, which occurs at output 25.  Note that, with Firm 1 producing 25 and Firm 2 

producing 50, the total output of the two firms (Q1 + Q2) is 25 + 50 = 75.  The industry 

is now producing 75 units, which is greater than the profit maximising output 50, and 

price will be correspondingly lower. 

 

Now suppose Firm 1 thinks Firm 2 will produce 75 units.  In this case Firm 1’s demand 

curve is the market demand curve D1(0) shifted horizontally to the left by 75.  The 

result is the Demand line D1(75), with the MR line MR1(75), leading to a profit 

maximising output for Firm 1 of 12.5.   

 

Finally, if Firm 1 thinks that Firm 2 will produce the 100 units then Firm 1s demand line 

will be right across to the vertical line and there will be no demand for Firm 1’s product 

at all and it will produce zero.  Firm 2 will then supply the entire market demand. 

 

What we have seen here is that Firm 1’s output decision is a decreasing function of 

how much it thinks Firm 2 will make.  We summarise the figures as follows: 

 

Firm 2 assumed output  Firm 1 actual output  

0 
50 
75 
100 

50 
25 
12.5 
0 

   

Figure 27.  Firm 1’s Output choices in the light of Firm 2’s Assumed Output 

 

We can plot these figures as a linear curve, relating Firm 1’s output to its expectations 

of Firm 2’s output.  This line is called a Reaction Curve – and is in fact the Best 

Response curve we encountered earlier.   
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Figure 28.  Reaction Curves for Firms’ 1 and 2 

 

Thus, Firm 1’s Reaction Curve shows how much it will want to produce for any given 

output of Firm 2, ranging from an output of 50 when Firm 2 makes zero, down to an 

output of zero when Firm 2 makes 100.  As we generated a Reaction Curve for Firm 

1 in response to the possible outputs of Firm 2, so can we produce a Reaction Curve 

for Firm 2 in response to the possible outputs of Firm 1.  If we assumed identical firms 

producing identical products with equal MC and demand lines, then Firm 2’s Reaction 

Curve will be the mirror image of Firm 1’s and the market demand will be split equally.  

In our example, Firm 2’s Reaction Curve is more elastic to changes in Firm 1’s output 

(its slope being 0.75 compared to 0.5 for Firm 1).   

 

The equilibrium output for the two firms in this market is determined where the two 

Reaction Curves cross.  This is the Cournot Equilibrium and is, as we saw above, 

an example of a Nash Equilibrium.  Where the two curves intersect then both firms are 

producing what they would wish to produce in the light of what the other is producing 

– and so neither would change their output decision given the output of the other firm.  

How is the equilibrium achieved?  Suppose at first the firms are not at their intersection 

point – for example, imagine that Firm 1 is producing Q1o in the below diagram.    
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Figure 29.  Process for Establishment of Cournot Equilibrium1  

 

At this output, Firm 2 would want to produce at the point a on its Reaction Curve.  

When Firm 2 produces at the output corresponding to a then Firm 1 will want to 

produce (given its Reaction Curve) at the lower output corresponding to point b, which 

in turn causes Firm 2 to increase output along its Reaction Curve, which causes Firm 

1 to cut output again, leading to a further but smaller increase in the output of Firm 2, 

and so on.  As is apparent, the arrow lines converge on Q1e and Q2e and this is the 

Cournot-Nash equilibrium, where neither firm will have any reason to revise their 

output decisions.   

 

 

The Bertrand Model  

 

Reading Cournot’s work, another French economist, Joseph Bertrand, was inspired to 

come up with an alternative model of Duopoly behaviour.  Where Cournot assumed 

that firms responded to each other’s output decisions, Bertrand argued that they were 

 
1 This diagram is based in Frank, Microeconomics and Behavior, p. 428.  

Firm 2’s Reaction 

Curve = R2 = f(Q1) 

Firm 1’s 

Reaction 

Curve = R1 = 

f(Q2) 

Q1 

Q2 

Q1o 

Q1e 

Q2e 

b 

a 
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more likely to respond to one another’s pricing decisions.  He assumed again (like 

Cournot) that each firm was identical and produced at constant Marginal Cost.  If Firm 

1 sets a price of P1, then Firm 2 has three choices: either charge a price greater than 

P1, in which case it would sell zero; charge a price the same as P1, in which case the 

two firms would split the market between them; or charge a price below P1, in which 

case Firm 2 would gain all the market and Firm 1 would sell nothing.   

 

The option of setting a price below P1 will always yield more profit so Firm 2 will 

undercut Firm 1.  In Game Theory terms, a price cut is always Firm 2’s Dominant 

Strategy.  But if price cutting is the Dominant Strategy for Firm 2 it is also the Dominant 

Strategy for Firm 1.  So Firm 1 will then undercut Firm 2.  And so on, with both Firms 

cutting price until eventually P=MC.  At this point neither firm will want to cut price any 

further since to do so will make a loss.  So, the outcome of the Game is that for each 

firm P=MC and the market is shared equally between the two firms.   This is the Nash 

Equilibrium.  It is also an example of a Prisoner’s Dilemma outcome, in the sense that 

both firms would have been better off splitting the market at the initial price P1 rather 

than the lower price P=MC.   This is apparent if we set up this game in terms of a 

payoff matrix.  

 

  Firm 2 

  Price P1 Lower Price P2  

Firm 1 Price P1 
 

100, 100 -50, 200√ 

Lower Price P2 
 

√200, -50 √0, 0√ 

 

Figure 30.  Payoff Matrix for the Bertrand Model  

 

Each firm faces a choice of setting a price P1 or undercutting it with a lower price P2.  

The figures shown are Super Normal Profits in £millions, and the negative figures are 

losses corresponding to the fixed costs of production (£50m).  We establish the Nash 

Equilibrium point by the usual technique and find that it is at the Lower Price P2.  Quite 

simply, for both Firms Lower Price is the Dominant Strategy. 

 

So, at the higher price P1, Firm 1 will make profits of 200 if it charges Lower Price P2 

when Firm 2 charges P1, while Firm 2 makes 200 profits at P2 when Firm 1 charges 

P1.  If Firm 1 charges a price of P1 and Firm 2 undercuts it with P2, then Firm 1 won’t 

sell any output at all and its revenue will be zero, leaving it with a loss of £50m as it 

still has to pay its fixed costs.  The same will happen to Firm 2 if it is undercut by Firm 

1.  Each firm will do better charging a lower price whatever the other firm does.   
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The upshot is that both firms charge the low Price P2 and this is the Nash Equilibrium 

since neither would then want to raise their price given the others P2 strategy.  

Supernormal profits have been competed away to zero.  Of course, as is typical in 

such cases, both firms would have done better to price at P1 and make £100m profits 

each.  But in the absence of binding collusion (which is illegal) the logic of this game 

is for each firm to undercut P1 and initiate a price war driving price down to P2.    

 

 

The Stackelberg Oligopoly Model 

 

In the Cournot duopoly model both firms set their output decisions simultaneously and 

assumed that their own output decision would not affect the output decision of their 

rival: remember that the model worked by Firm 1 formulating its output based on its 

expectation of the output of Firm 2.  For Firm 1, Firm 2’s output was fixed, and Firm 1 

was, in effect, filling the gap in the market left by Firm 2.  But clearly this is wrong since 

the very existence of Reaction Curves for BOTH firms means that just as Firm 1 

formed its output decisions based on the expected output of Firm 2, so Firm 2 formed 

its output decisions based on expectations of Firm 1.  The decisions of both firms are 

simultaneously self-determining.   

 

Heinrich Von Stackelberg, a German economist who published his theory of duopoly 

behaviour in 1934, developed a Leadership Model that relaxed the assumptions of 

Cournot’s work in two ways.1  First, the Game is not simultaneous but sequential: one 

firm sets its output and the other firm reacts to that actual output – not the expected 

output as in the Cournot model.  Second, the firm that sets its output first knows that 

its output decision will influence the output of the other firm.  For example, where in 

the Cournot model Firm 1 sets its output in the expectation that its decision will not 

affect Firm 2 (which has already selected its output), in the Stackelberg model Firm 1 

knows that the output it chooses will affect the output of Firm 2 because it knows Firm 

2’s Reaction Curve: it knows that Firm 2 will adjust its output in response to the output 

Firm 1 produces.  The firm that sets its output first is the Leader, while the firm that 

sets its output second in the light of the Leader’s output is the Follower.  This is, then, 

a Sequential Game and the basic point to emerge is that there is a First Mover 

Advantage: the firm that sets its output first achieves a better payoff in profits than the 

firm that sets its output second. 

 

To understand the economics of this, refer again to the Cournot duopoly diagram.   

 

 
1 Stackelberg joined the Nazi Party in 1931 and became a member of the SS.  He died in Madrid in 
1946.  
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Figure 26.  The Cournot Model of Duopoly  

 

It will be remembered that D1(O) is the total market demand curve for the product and 

D1(50) is the demand curve facing Firm 1 when Firm 2 is assumed to be producing 50 

units, to which there corresponds an MR line MR1(50).  The point to note is that Firm 

1’s demand line D1(50) is drawn on the assumption that the output of Firm 2 is fixed.  

However, we have seen, this is not true, since Firm 2’s output varies with Firm 1’s 

output according to its own Reaction Curve.  

 

Quite simply, the more Firm 1 produces, the less Firm 2 will produce.  What this means 

is that the slope of the Firm 1 demand curve as shown, D1(50), is too steep (i.e. too 

inelastic).  Yes, as Firm 1 increases its output it will have to lower its price.  But it won’t 

have to lower its price at the same rate as the market demand curve D1(0) suggests 

since as it increases its output, Firm 2 will lower its output, so the net increase in output 

will be smaller than the diagram suggests.   

 

In terms of the diagram, Firm 1’s demand curves will pivot outwards and have a lower 

gradient, and as the demand curves pivot out so do the MR curves, and this in turn 

means that at, say, the equilibrium point corresponding to D1(50), where MR1(50) = 

MC1, MR1(50) will be higher than shown, and so will exceed MC1, and Firm 1 will 

want to increase output until they are equal again.  Thus, the effect of assuming that 

an increase in the output of Firm 1 will cause the output of Firm 2 to fall is that Firm 1 
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will increase its output and take a larger share of the market at the expense of Firm 2.  

And this means that Firm 1 will make more profit than Firm 2.  This is the prediction of 

the Stackelberg model.  Of course, the same thing would happen if Firm 2 increased 

its output first.  The general point is that: in this Sequential Game, where the action of 

one firm impacts on the action of the second firm, the first firm to act will enjoy a first-

mover advantage.  

 

Earlier we explained how first-mover advantage could be modelled through decision 

trees.  Let us see how this works in this case.   

 

There are two firms, Leader and Follower.  Leader faces a choice between two 

outputs, 6 and 9, while Follower must choose between 7 and 10.  We first depict their 

payoffs in a normal form matrix. 

 

  Follower 

  Output 7 Output 10 

Leader  Output 6 
 

66, 77 √48, 80√ 

Output 9 
 

√72, 56√ 45, 50 

   

Figure 31.  Payoffs to Leader and Follower in Stackelberg Model  

 

There are two Nash Equilibria in this Game.  Either Leader produces 9 and Follower 

7, or Leader produces 6 and Follower 10.  The outcomes of these two equilibria are 

not the same: when Leader produces more than Follower, Leader makes the most 

profit; when Follower makes more than Leader, Follower makes the most profit.  This 

is the implication of the Stackelberg model.  So which equilibrium will prevail?  It all 

depends on who sets their output first.  The process can be tracked in the decision 

tree expression of this Game.1  

 

 
1 This decision tree is taken from the EconPort website:  
http://www.econport.org/econport/request?page=web_experiments_modules_stackelberg 
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Figure 32.  Decision Tree for Stackelberg Output Decision Game   

 

The Leader has a choice of two outputs, 6 or 9.  It first reflects what will happen if it 

chooses 6.  Follower, at F1, will then choose output 10, since this will give it the higher 

payoff of 80 compared to 77 if it chooses 7.  So Leader assumes that if it chooses the 

output of 6, then Follower will choose 10, leaving a payoff to Leader of 48.  Suppose, 

now, that Leader produces 9.  In this case, Follower will choose 7 since this maximises 

its possible payoff at 56.  This is good news for Leader, which now makes a payoff of 

72.  Clearly, given that Leader’s payoff is higher under output 9 than output 6 (given 

Follower’s responses), Leader will opt for output 9, and the Game will end up at point 

G3.  This is a Nash Equilibrium: given the action of the other player, neither firm would 

change their output choices at this point.  Whoever selects their optimum output first 

makes higher profits.   

 

 

Oligopoly and Advertising 

  

As I write this, the TV schedules are full of Christmas adverts by the major food 

retailers – Marks and Spencer, Tesco’s, Aldi, Asda and so forth.  Why do these food 

retailers advertise so much?  Its slightly odd, since, really, few people need to be 

reminded to buy food for Christmas, and the costs of these adverts is very high.  It is 

quite likely that the various retailers would be better off not advertising at all and just 
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enjoy the pure benefit of the increased Christmas food spending.  This, of course, is 

just what does not happen.  And Game Theory helps to explain why.   

 

Why do firms advertise at all?  In most cases its not to increase total demand for the 

product they make; it is, rather, to increase their share of the total market.  Food 

adverts at Christmas will, probably, make each of us buy a bit more food.  But the 

reason Asda or Sainsburys advertise is so that we buy our Christmas food from them 

and not some rival.  This is why their advertise.  The problem is, they are essentially 

locked in a Prisoner’s Dilemma.  

 

Consider two rival retailers, Tesco and Sainsbury’s.  Their payoffs from advertising are 

as follows (in millions of pounds).  In each box the payoff to the Row player is given 

first (Tesco’s) and the payoff to the second player (Sainsbury’s) is given second. 

   

  Sainsbury’s 

  Advertise  Don’t Advertise  

Tesco Advertise  
 

√30, 30√ √70, 20 

Don’t Advertise 
  

20, 70√ 50, 50 

 

Figure 33.  Payoffs to Tesco and Sainsbury’s from Advertising  

 

The Nash Equilibrium for this Game is for both firms to advertise, even though they 

would both be better off if neither advertised (so the outcome is similar to a Prisoner’s 

Dilemma, when both prisoners would be better off being silent but both confess).  So, 

starting with Tesco, if Sainsbury’s Advertises, Tesco will need to advertise too, since 

if it does not its share of the Christmas market will be squeezed and its profits will be 

only £20m, whereas if it advertises its profits will be £30m.  So, we put a tick next to 

Tesco’s £30m payoff in the top left-hand box.  But if Sainsbury’s does NOT advertise, 

Tesco’s will benefit even more by advertising as it can gain market share from the 

silent Sainsbury’s, so hence we put a tick next to the payoff to Tesco’s of £70m in the 

top right-hand box.  Obviously, Advertise is Tesco’s Dominant Strategy – it will run a 

Christmas advert whatever Sainsbury’s does.   

 

The same reasoning applies for Sainsbury’s.  If Tesco advertise, Sainsbury’s will do 

better to advertise too, since their payoff then will be £30m, compared to only £20m if 

they don’t advertise.  Hence, we place a tick next to £30m for Sainsbury’s payoff in the 

top left-hand box.  And if Tesco do NOT advertise, Sainsbury’s will do even better and 

earn £70m if they advertise and thereby take market share off Tesco’s.  So we place 

a tick next to £70m for Sainsbury’s in the bottom left hand box. 
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As can be seen, the only box with two ticks is the top left-hand box – where both shops 

run Christmas adverts and earn £30m in profits each.  This is the Nash Equilibrium – 

which means that, in the light of what the other retailer does, neither regrets its decision 

to run a Christmas advert campaign.  By contrast, suppose Tesco’s had decided not 

to run a campaign and now it finds Sainsbury’s has – well then Tesco’s would regret 

that decision and would (if it could) reverse it, since by not advertising it makes only 

£20m profit to Sainsbury’s £70m.  Advertise-Advertise is the only outcome that neither 

retailer would change even if it could.   

 

The irony is, of course, that both firms would be better off if they abandoned Christmas 

adverts altogether, for then each would earn £50m in profits compared to £30m.  The 

problem is neither firm will occupy that position for, as we have seen, it is always in 

the individual retailer’s interest to advertise irrespective of what the other retailer does.  

Any retailer seeking not to advertise, and thereby make the bottom right-hand box 

possible, will be badly hit by the other firm that DOES advertise.  So no one takes that 

risk and both firms advertise – and as a result our TV screens are saturated with food 

adverts by oligopolistic retailers.  Whether this is an optimal outcome for consumers 

is another question!  

 

 

The Free-Rider Problem and Public Goods  

 

A familiar problem discussed in economics is that of the under-provision of Public 

Goods.  Public Goods are ones which, if they are provided at all, everyone benefits 

from them – such as a general fire service or a flood protection barrier.  The problem 

is that, if everyone benefits from them whether they have paid for them or not, 

everyone will have an incentive to avoid paying – with the result that the good is not 

provided at all.  

 

This outcome can be modelled through Game Theory.  For example, imagine two 

electronics stores operating in a shopping mall.1  There is no security guard, and each 

firm loses £300 a week due to theft.  Assume that a security guard patrolling the mall 

would cut these thefts to zero, but the guard costs £500 a week to hire.  No one store 

would wish to hire a guard since the reduction in theft (£300) is less than the guard’s 

salary (£500).  Would it be in the interests of the two firms to join together and hire a 

guard?  Yes.  The cost per store would be £250, and the savings per store would be 

£300.  But Game Theory predicts they won’t hire a guard at all and will both be worse 

off as a result.  The reason is shown by the below payoff matrix.  

 

 
1 This example is taken from J.M. Perloff, Microeconomics with Calculus (Pearson, Harlow, Second 
Edition, 2011).    
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  Store 2 

  Hire Guard  Don’t Hire Guard 

Store 1 Hire Guard 
 

-200, -200 -200, 300√ 

Don’t Hire Guard 
 

√300, -200 √0, 0√ 

 

Figure 34.  Paying for a Guard and the Free Rider Problem 

 

The above table shows the change in profits if the stores do or do not hire a guard.  If 

each firm, by itself, hires a guard then each firm will lose £200.  This is because the 

guard costs £500 a week but only saves £300 in thefts, so each firm, left to its own 

devices, will not hire a guard.  This is shown by the -200 entries in the matrix.  But 

what if one firm hires a guard and they split the costs?  Both would be better off.  

However, this won’t happen.  Consider Store 1.  If Store 2 hires a guard and then asks 

Store 1 to contribute £250 towards the costs of paying them, Store 1 will refuse.  If 

Store 2 hires a guard then Store 1 gets the £300 benefit of reduced theft for free.  So 

it is better off not contributing and ‘free-riding’ on Store 2’s guard.  Thus, we tick 300 

in the bottom left-hand box as the optimum strategy for Store 1 if Store 2 hires a guard.  

And if Store 1 hires a guard then Store 2 is better off not contributing and getting £300 

in reduced thefts for free.   

 

For both players the Dominant Strategy is not to hire a guard: whatever the other store 

does, do not hire a guard!  As a result, the firms end up in the bottom right-hand corner.  

The two ticks in this box show that this is the Nash Equilibrium.  Thus, in such cases 

where one player cannot be excluded from the benefits the other pays for, the outcome 

will tend to be that no mutually beneficial good will be provided.  This is why Public 

Goods usually have to be provided by the state, which can force everyone to pay.  In 

the shopping mall example, maybe the owner of the mall could hire the guard and 

force both stores to provide £250 to the cost.  They will both be better off as a result 

compared to their Nash Equilibrium.  

 

 

Economic Development 

 

As a final example of the use of Game Theory in economics, we consider a problem 

in economic development.1  Imagine a developing country with two firms – a Steel 

Firm and a Ship Builder.  The firms are interdependent.  If the steel firm is to invest in 

new plant, it needs the market that the ship builder will provide.  And if the ship builder 

 
1 C.f. M. McCartney, ‘Game Theory: A Refinement or an Alternative to Neo-Classical Economics?’, in 
E. Fullbrook (ed.), Real World Economics (Anthem Press, London, 2007), pp. 156-157.  
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is to open a new workshop it will need the materials the steel firm will provide.  A profit 

payoff matrix in this situation might be as follows: 

 

  Ship Builder 

  Not Invest Invest 

Steel Firm Not Invest 
 

√0, 0√ 0, -7 

Invest 
  

-7,0 √3, 3√ 

 

Figure 35.  Payoffs to Investment for two Interdependent Firms  

 

The figures here are profits.  If neither firm invests, their mutual profits are zero.  If 

either invests in plant, and the other does not, the investing firm makes large losses 

of -7.  But if they both Invest they make their best joint returns of 3 since each provides 

services to the other.  The problem is that there are two Nash Equilibria, Invest and 

Not Invest.  The Game could eventuate in either outcome, but Not Invest is more likely.  

This is because, although both players will know that Invest yields their joint highest 

returns, there is a risk for any one in Investing if the other for some reason (say a 

failure to reach terms with a bank) fails to invest.  Then they will be left with large 

unused capacity and large losses (-7).  Any risk averse firm wishing to minimise 

potential losses (MaxiMin) will simply not invest – as then the worst that can happen 

is their profits are unchanged.   

 

This example highlights a dilemma in economic development.  Development is an 

interdependent process with many types of industry and infrastructure needing to 

move forward together if they are to move forward at all.  It’s no use building a new 

factory if there are no roads or electricity supplies to serve it – just there is no use 

building a road or electricity plant if there are no consumers to use its services.  This 

is why development often has to be of the ‘Great Spurt’ variety analysed by Alexander 

Gerschenkron and why the state can have a role to play: in coordinating investment, 

building infrastructure and providing guaranteed orders.  This development model 

Game suggests that a free market might not be able to generate large-scale economic 

growth.    

 

 

Conclusion 

  

What Game Theory provides is a technique for analysing the rational behaviour of 

decision takers who are formulating strategies in situations where the outcomes of 

their decisions depend on the decisions taken by other parties.  It generally turns out 

that, while the outcomes of such interactions would appear to be unpredictable, in 
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reality we can predict how a Game will play out and what will be the likely equilibrium 

result of the Game.  This result will not always be competitive.  It will not always be 

zero-sum.  It can often be the case – especially in repeated Games – that it is in the 

long-run interests of both players to cooperate: to stay silent in the Prisoner’s Dilemma, 

or to mutually charge high prices in an oligopolistic pricing Game.  But even in these 

cases, the logic of the situation will usually offer a temptation to one or other player to 

defect and try to steal a march on the other.  Hence cooperation can always turn into 

conflict.  Yet, whenever the players value their long-term payoffs, they will generally 

be led to cooperate again for this is in their mutual interest.   

 

The predictions of Game Theory often appear rather disappointing.  For one thing, its 

assumptions are unrealistic.  It assumes players are rational, which studies show is 

often not the case.  For example, even when cooperation is clearly in the interests in 

both players, there is a continual temptation to defect and cheat.  In a well-known set 

of Game Theory experiments at the University of Ohio in the early 1960s players were 

given the choice of pushing a Black or Red button.  The payoffs in terms of cents per 

Game were as follows.  

 

 

  Player 2 

  Black Red  

Player 1 Black 
 

√4c, 4c√ √1c, 3c 

Red 
 

3c, 1c√ 0, 0 

 

Figure 36.  The Payoff Matrix in the University of Ohio Cooperate or Defect Game 

Experiment 

 

This Game has a clear Nash Equilibrium: both players should click Black and make 4 

cents each per play.  Indeed, for both players Red is a Dominated Strategy.  Both 

players should click Black whatever the other player does.  And yet when this Game 

was played, the players clicked Red 47 per cent of the time!  Why?  It seems the 

reason was both players couldn’t resist trying to actually win a play.  So, if Player 1 

goes Black but Player 2 goes Red, then although Player 2 makes only 3c and not 4c, 

they will beat Player 1 by two cents (since Player 1 now only makes 1c).  It seems that 

humans for some reason, biological or cultural, have an instinct to try and beat another 

player even when it is in their mutual best interests to cooperate.1  Winning yields its 

own particular satisfaction, even if we damage our long-term interests to do so.   

 

 
1 Poundstone, Prisoner’s Dilemma, pp. 173-177.   
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Game Theory is also unrealistic in assuming that the players can give specific values, 

not only to their own payoffs, but to their rivals.  In some cases this is possible.  Where 

the payoffs are money values, as in the above example, or in some zero-sum Games.  

But generally it is not.  Attaching values to payoffs is usually a subjective exercise, so 

the scientific precision of the predictions arrived at is rather delusional.   

 

Third, Game Theory rarely generates striking insights that challenge what we might 

regard as expected behaviour in a given situation.  Its predicted outcomes are usually 

intuitive.  The fact is we are all natural Game Theory players.  And this is not surprising: 

we are all schooled from childhood to develop strategies for dealing with situations 

where we are interacting with small number of other persons to realise our goals 

subject to the other players seeking to realise their goals.  From one perspective, 

family life involves little else (What time does the child go to bed? How much 

vegetables and ice-cream will the child eat? What gift does the child ask for as a 

present, and so on).  All these are Game Theory situations, and school and work life 

remain replete with them too.  We all develop an instinct of what to do when confronted 

by diverse payoffs and a range of strategies.  It doesn’t require Game Theory for a 

Prisoner to know it’s in their interest to confess, or for a player of Chicken to know they 

had better swerve if their rival is a ‘mad-man’, and footballers really do kick left and 

right randomly in penalty shoot outs.   

 

What Game Theory provides is an exceptionally rigorous approach to understanding 

strategic behaviour in such situations.  It doesn’t so much shape our behaviour, as 

allow us to better understand it.  It simplifies and clarifies and provides a series of 

concepts the better to analyse choices – MaxiMin, Dominated Strategies, Nash 

Equilibria, Simultaneous versus Sequential Games, Tit-for-Tat, Strategic Moves, 

Credible Commitment and so forth.  Like much of economics, it seeks to develop 

theories to explain what humans actually do, not shape what they ought to do.  It is 

positive rather than normative.  But, of course, this is what science seeks to do in 

general: Newton sought to understand gravity and trace its operation in more exact 

ways, not subvert it.  The apple in his orchard fell to the ground well enough before 

Newton accounted for it.  Indeed, economists used Game theoretic concepts even 

before Game Theory was invented.  The Nash Equilibrium had already been 

developed by the likes of Cournot before John Nash produced his formal proof of the 

proposition.  Yet, once having studied Game Theory, we become alive to just how 

ubiquitous Game situations are in our lives generally and in economic behaviour 

especially.  And once confronted with such situations, it helps us to think logically and 

precisely about them, bringing new rigour to our study of oligopoly behaviour or the 

free-rider problem and public goods.  For this reason it is an essential part of modern 

economic analysis, even if it did not revolutionise economic theory (or military strategy) 

as Von Neumann and Morgenstern initially hoped it would.  

 


