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Abstract  
This paper explains the concept of the Elasticity of Factor Substitution, being a measure of 
how easily capital and labour can be substituted for each other in the production process.  This 
concept is important since it helps to predict how readily production processes can adjust to 
differences in the relative supplies of factors of production, becoming more or less intensive 
in their utilisation of capital or labour as relative factor prices change.  The value of the 
Elasticity of Factor Substitution (σ) depends on the percentage change in the capital-labour 
ratio divided by the percentage change in the Marginal Rate of Technical Substitution (MRTS), 
which measures how much of one factor must be given up for a given increase in another 
whilst holding total output constant.  As the MRTS varies between zero and infinity so does 
the Elasticity of Factor Substitution, according to whether the factor inputs cannot be 
substituted for each other at all (MRTS = 0) or are perfect substitutes for each other (MRTS = 
∞).  Typically, we assume that the two factors are imperfect substitutes for each and that the 
MRTS varies as the ratio of factor inputs varies.  In the case of a Cobb-Douglas production 
function the changes in the MRTS and the K/L ratio exactly counter-balance each other, with 
the result that the Elasticity of Substitution is constant and always equal to one.  Evidence 
suggests that actual production functions have constant elasticities of substitution but not 
generally equal to one.  Hence Arrow, Chenery, Minhas, and Solow developed the Constant 
Elasticity of Substitution (CES) production function, the derivation and properties of we 
summarise here.          

 

 

 

The Elasticity of Factor Substitution is a measure of the degree to which one factor 
input used in a production process (such as capital) can be substituted for another 
factor input (such as labour) when the ratio of factor prices changes.  The concept was 
developed in the 1930s, with notable contributions by John Hicks, in his The Theory 
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of Wages (1932), A.P. Lerner, whose ‘Notes on the Elasticity of Substitution’ appeared 
in the Review of Economic Statistics in 1933, and Joan Robinson, in her The 
Economics of Imperfect Competition (1933).  Assuming a production function with two 
factor inputs (such as capital and labour): 

Q = f(K, L) 

then the Elasticity of Substitution is defined as: 

σ = Proportionate Change in the ratio K/L
Proportionate change in Marginal Rate of Technical Substitution of Labour for Capital 

    

σ = 

d�KL�
K/L

d(MRTS)
MRTS

 = 
d�KL�

d(MRTS)
 . MRTSK

L

 

As we explain below, the Elasticity of Factor Substitution is also equal to: 

σ = 
Percentage change in (KL)

Percentage change in (wr )
 

where w is the wage rate and r is the rental price of capital.  Expressed in this latter 
way, the significance of σ becomes clearer: it tells us how far a change in relative factor 
prices will lead to a relative change in the ratio of factor inputs. 

The Elasticity of Substitution takes values ranging from zero to infinity.  What 
determines the Elasticity of Substitution is how rapidly the Marginal Rate of Technical 
Substitution of labour for capital (MRTSLK) changes as labour is substituted for capital 
(or vice versa).  If, as labour is substituted for capital (K/L declines), the MRTSLK 
declines rapidly (meaning that more and more labour must be substituted for capital 
to keep output constant – which is to say, labour is less able to substitute for capital) 
then the substitution of labour for capital is difficult and σ is less than one; but if, by 
contrast, as L increases relative to K the MRTSLK decreases slowly or not at all, then 
σ will be greater than one and substituting labour for capital will be easy.  The value of 
σ thus obtained is important in determining what will be the effects of a change in the 
ratio of the price of labour and capital on the relative use of labour and capital in the 
production process.  When σ is low (say 0.1) then a 10 per cent change in the MRTS 
(equivalent to a 10 per cent change in relative factor prices) will cause a small (1 per 
cent) change in factor proportions (0.1 x 10).  But if the elasticity of substitution is high 
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(say 5) then a 10 per cent change in the MRTS (or relative factor prices) will cause a 
(5 x 10) equals 50 per cent change in factor proportions.1   

 

The Marginal Rate of Technical Substitution  
The MRTS measures how much of one factor must be added to a production process 
to compensate for the deduction of a unit of another factor in order for total output (Q) 
to remain constant.  The concept can be illustrated with reference to an isoquant.  

 

Figure 1.  The Marginal Rate of Technical Substitution as the Gradient of an 
Isoquant   

An isoquant shows combinations of capital and labour that yield a constant level of 
output.  Isoquant IQ represents a given and constant level of output, this output 
associated with varying combinations of capital and labour inputs.  Starting at point A 
with the combination of capital and labour K1/L1, in moving to point B capital inputs 
fall from K1 to K2 while labour inputs rise from L1 to L2.  The ratio of the change in 
capital input to the change in the labour input is the Marginal Rate of Technical 
Substitution of labour for capital: 

MRTSLK = – 
ΔK
ΔL

   

The MRTS is always negative since if K decreases L must increase and vice versa.  
As the change in capital diminishes, the degree to which labour inputs need to change 

 
1 D. Heathfield and S. Wibe, An Introduction to Cost and Production Functions (Macmillan Education, 
Basingstoke, 1987), p. 59.  
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to keep output constant also diminishes – which is to say that B tends towards A.  
Hence ΔK/ΔL tends towards dK/dL, which is the gradient of the isoquant at point A.    
Thus:  

MRSTLK = – 
dK
dL

  

Thus, the MRTS is equal to the gradient of an isoquant.  It depends upon the ratio of 
the Marginal Productivities of the two factors.  This can be shown by taking the total 
differential of the production function: 

Q = f(K, L) 

dQ = 
∂Q
∂K

dk + 
∂Q
∂L

dL 

Since dQ = 0 for a given isoquant (output is constant), then: 

∂Q
∂K

dk + 
∂Q
∂L

dL = 0 

∂Q
∂K

dk = – 
∂Q
∂L

dL 

dK
dL

 = – ∂Q/∂L
∂Q/∂K

 = 
MPL
MPK

 

Where MPL and MPK are the marginal products of labour and capital respectively.  

Typically, we assume that isoquants are convex to the origin, such that their gradient 
declines continually as we move down the line.  This is because capital and labour are 
considered to be imperfect substitutes for each other such that as capital inputs are 
reduced by successive units, more and more labour is required to compensate for 
each unit reduction in the capital input. Hence the MRTSLK is said to increase as we 
move down any given isoquant and the slope of the isoquant becomes flatter.  For 
such an isoquant, the Elasticity of Substitution is greater than zero and less than 
infinity.  We return to this case below.  However, it is also theoretically possible that 
the MRTS does not vary along an isoquant yielding cases where the Elasticity of 
Substitution is zero or tending to infinite.   

 

1.  Elasticity of Substitution is Zero (σ = 0) 

In this case technology requires the use of fixed factor proportions and it is not possible 
to substitute one factor for another.  The MRTSLK is zero.  One might think of a pilot 
and an aeroplane: each plane requires one pilot and pilots can’t be substituted for 
planes or planes for pilots.  Fixed-factor ratios generate L-shaped isoquants. 
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Figure 2.  Isoquants where the Factor Inputs are Perfect Complements 

In this example, capital and labour must be used in fixed 1:1 ratios, as in our plane-
pilot illustration.  At point a there is one pilot and one plane, and at point b there are 
two pilots and two planes.  At a point such as a there is no reason to increase the 
number of pilots beyond one if the number of planes remains at one: the extra pilot 
contributes nothing and hence as L increases along the isoquant IQ1 output remains 
the same.  Equally, if the number of pilots remains at one and the number of planes is 
increased, moving up the isoquant away from a, output does not increase as the new 
planes sit idle for there is no extra pilot to fly them.  This is why the isoquant has a L 
shape.  The MRTS is zero as the two factors L and K cannot be substituted for one 
another.  In this case, a firm would only occupy the corner point of a given isoquant.  
Having arrived at the technically necessary ratio of capital to labour it would have no 
incentive to employ more of one or other factor since this would only add to costs – 
adding nothing to output.  

When factors must be used in fixed proportions we say they are perfect complements.  
They must be used together (like the proverbial horse and carriage).  In this case the 
production function is: 

Q = min(aK, bL) 

Here a and b are fixed technical parameters reflecting how many units of K and L are 
required to make a unit of Q (in our case Q is a flight and a and b are both 1), while 
‘min’ means that Q is determined by the smaller of the two values aK and bL.1  If aK < 

 
1 W. Nicholson, Microeconomic Theory: Basic Principles and Extensions (The Dryden Press, Illinois, 
Second Edition, 1978), pp. 197-199.  
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bL, then if K and L are applied in their technically fixed ratios Q is determined by K 
only: 

Q = aK 

Given K, then adding L beyond the fixed ratio of L to K makes no addition to output.  
So, in our example, if there were 100 planes and 200 pilots, then it is the lower number 
of 100 planes that determines output – 100 pilots will be superfluous.  By contrast, if 
bL < aK, then it will be the number of pilots that fixes the maximum number of flights.  
When aK = bL then both factors are optimally utilised – as in the case of one pilot/one 
plane.  Hence: 

aK = bL 

K
L
 = b

a
 

Here, the ratio of capital to labour in production (K/L) is constant and determined by 
the technically fixed ratio b/a.  Since the MRTS and the change in the ratio K/L are 
both zero, the Elasticity of Factor Substitution (σ) is zero.1   

 

2.  Elasticity of Substitution is Infinite (σ = ∞): Perfect Substitutes  

In this case one factor can be substituted for another continuously at a fixed rate.  For 
example, every time we reduce the K input by 1 we can maintain output at a given 
amount by increasing the number of workers by 3; in which case the MRTSLK is -1/3 
and this ratio never changes along the isoquant which is consequently a straight line. 
Such an isoquant is drawn below.  

 
1 If we assumed that two pilots were required to fly a plane (e.g. a pilot and a co-pilot) then the production 
function would become: 
Q = [(1)K, �1

2
�L] 

Thus, if K = 100 and L = 100, then Q = (100, 50) and it would be the lower number 50 that would 
determine Q.  In other words, with 2 pilots per flight, 100 pilots can fly 50 planes, so 50 planes would 
be used and 50 would remain idle.   
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Figure 3.  Isoquant when Capital and Labour are Perfect Substitutes 

An example of a production function yielding such an isoquant is: 

Q = f(K, L) = aK + bL 

In this case: 

dQ = 
∂Q
∂K

dk + 
∂Q
∂L

dL  

dQ = adK + bdL = 0 

dKa = – dLb 

dK
dL

 = – b
a
  

The MRTSLK is constant and equal to -b/a.  Given that: 

σ = 
%Δ in K/L
%ΔMRTS

   

then the fact that the percentage change in the MRTS is zero means that σ tends 

towards ∞. 

3.  Imperfect Substitutes (o < σ < ∞) 

Our third case is more typical: namely, when two factors can be substituted for each 
other in the production process, but they are not perfect substitutes.  In this case, the 
MRTS is negative but less than infinity and greater than zero and it varies along an 
isoquant.  This is what is assumed in a conventional convex isoquant, where, as we 
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move down an isoquant, the gradient of the curve becomes less negative and we say 
that the MRTS is diminishing – which means that the amount of capital given up per 
additional unit of labour input falls as we move down an isoquant.  In other words, 
labour is an imperfect substitute for capital.  At first, when we have lots of capital and 
little labour, then a significant amount of capital would need to be given up if an extra 
worker were employed in order to keep output constant.  If, however, we have lots of 
workers in a factory but only a few machines, then an extra worker would make hardly 
any difference to output and so very little capital would need to be given up to keep 
output constant.  This is the point about the factors not being perfect substitutes.  Yes, 
if you substitute machines for workers you can maintain or increase output, but as the 
number of machines rises and the number of workers declines, it gets harder and 
harder to increase output with machines since the workers left fulfil vital functions like 
turning the machines on, setting them to run properly, clearing away waste products 
and so forth (in the context of a super market, who would reset the check-out machine 
when there is an unknown item in the bagging area?).  Similarly, a farm could cut its 
capital inputs and increase the number of workers and maintain output – but bit by bit 
the workers would have fewer and fewer tools and machines to work with and 
maintaining output when there is not even a spade to dig with would be almost 
impossible. When an isoquant is curved then both the K/L ratio and the MRTS change 
as we move along its length.   

 

 

Figure 4.  An Isoquant when Capital and Labour are Imperfect Substitutes  

Consider the two points, A and B, on the isoquant depicted in Figure 4.  Each point 
represents a particular combination of factor inputs (K/L) and to each there 
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corresponds a MRTS, given by the gradient of the isoquant at that point (dK/dL).  As 
we move down the isoquant from point A to point B two things change: 

i. The ratio of K to L 
ii. The MRTS of L for K 

 
It is the relationship between the simultaneous changes in both that determines how 
the Elasticity of Substitution behaves along the isoquant.  The sharper the curve of the 
isoquant the lower will be the Elasticity of Substitution – which, at the limit of a L-
shaped isoquant, is zero – while the flatter the isoquant the greater the Elasticity of 
Substitution, tending to infinite if the isoquant is a straight line. 

To understand how changes in the MRTS cause changes in the ratio of K to L we need 
to recall that a cost-minimising firm will always locate at that point on a given isoquant 
where the gradient of the isoquant is equal to the gradient of an iso-cost line. An isocost 
line shows the different combinations of capital and labour a firm can use for a given 
cost outlay.  For each given level of Total Costs there is a different isocost line.  Given 
a firm has two factor inputs, capital and labour, and the cost per unit of labour time 
used (e.g. one hour) is the wage rate w, and the rental cost per time unit of capital 
employed is r, then the firms Total Costs are: 

TC = wL + rK 

Where L is the amount of labour in hours and K is the amount of capital services in 
hours.  Expressing this in terms of K: 

rK = TC – wL 

K = 
TC
r
 – 

w
r

L 

This is a linear function.  The intercept of the vertical axis, when the firm only buys 
capital and employs no labour at all, is TC/r, i.e. the total spending on inputs divided 
by the price per unit of capital, r.  Clearly if we divide a total amount of cost spending 
by the price per unit of capital, we arrive at the total amount of capital the firm can 
acquire.  The slope of the line is w/r, which is determined by the ratio of input prices.  
The higher the wage rate, or the lower the rental price of capital, the steeper the isocost 
line – which again makes sense: if a firm employs less capital, the amount of extra 
labour it can employ is larger if the wage is low or the cost of capital is high.   
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Figure 5.  General Form of an Isocost Line 

At point A the firm spends all its outlay on capital, so the quantity of capital hired is 
TC/r, while B is where it spends all its total cost outlay on labour, so the maximum 
quantity of labour it can hire is TC/w.  The slope of the line is -w/r.    

Here we have shown just one isocost line.  In fact, there will be innumerable potential 
isocost lines, each corresponding to a particular level of costs.  A higher total cost 
yields an isocost line that intercepts the y and x axes at higher values, while a lower 
cost outlay will yield isocost lines below the example shown.   

To return to our initial question.  Suppose the firm wishes to produce a given output Q 
at the lowest possible cost, what combinations of capital and labour will it employ?  We 
can easily answer this question by combining isoquants with isocost curves.  In the 
case of cost minimisation, we take a given output as fixed and to this there 
corresponds exactly one isoquant.  We then shift an isocost line inwards until it is just 
tangential to the isoquant.  This is the lowest possible cost at which a given output can 
be produced given the available technology and factor prices.  The point at which this 
tangency position occurs on the isoquant will yield the cost-minimisation combination 
of capital and labour.  This is illustrated in Figure 6.    
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Figure 6.  Obtaining optimum combinations of Capital and Labour from the 
Tangency Point between the Isocost and Isoquant Curves 

In Figure 6, given the firm wishes to produce output 100, represented by the isoquant, 
the lowest possible isocost curve compatible with IQ = 100 is the one drawn, which is 
tangential to IQ = 100 at point A.  Point A, with the corresponding Labour inputs of L1 
and Capital inputs K1, is the cost-minimising position of a firm seeking to produce an 
output of Q = 100.  Any isocost curve below that shown would not be compatible with 
the quantities of Capital and Labour necessary to produce Q = 100 and is thus not 
feasible.  It would be possible to produce Q = 100 with isocost curves above that 
shown, but these would represent higher levels of cost and would thus not be cost-
minimising.  Thus, the cost-minimising firm would employ OK1 units of Capital and 
OL1 units of Labour.  Note that the firm will employ relatively more Capital than Labour 
which reflects the fact that the price of Labour is double the price of Capital.  

It is this result which enables us to better understand the meaning of the Elasticity of 
Substitution.  At the tangency point A the gradient of the isoquant is equal to the 
gradient of the isocost line.  That is: 

dK
dL

  = w
r
 

Now we already know that the gradient of the isoquant is the MRTS which is equal to: 

dK
dL

 = – ∂Q/∂L
∂Q/∂K

 = 
MPL
MPK

 

It therefore follows that a cost-minimising firm will employ that combination of capital 
and labour where: 

MPL
MPK

  = 
w
r
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In other words, a cost-minimising firm will employ the combination of capital and labour 
(K/L) where the Marginal Rate of Technical Substitution, which is equal to the ratio of 
the Marginal Product of Labour over the Marginal Product of Capital, is equal to the 
ratio of the wage of labour (w) to the rental cost of capital (r).  It is for this reason that 
we can re-write the Elasticity of Substitution as: 

σ = 

d�KL�
K/L

d(MRTS)
MRTS

  = 

d�KL�
K/L

d(w/r)
w/r

 

Hence we can say that the Elasticity of Substitution measures the degree to which a 
change in relative factor prices will bring about a change in the relative use of factors 
in the production process.  When σ = 0, and the two factors must be used in fixed 
proportions, a relative rise in (say) wages will not cause any tendency for firms to 
substitute capital for labour; when σ tends to ∞ then a small rise in wages will cause 
an extremely large change in the relative utilisation of capital and labour; while if σ = 
1 then a relative increase in wages relative to the rental price of capital will cause an 
equal percentage change in the capital-to-labour ratio.  

 

Constant Elasticity of Substitution (CES)   
It is quite possible that the Elasticity of Substitution will vary along an isoquant.  But 
economists have been chiefly interested in isoquants that have a constant Elasticity 
of Substitution along their length: what are known as Constant Elasticity of Substitution 
(CES) production functions.  Two cases are especially noteworthy.  

Elasticity of Substitution (σ) Equals One 

An example of a production function yielding σ = 1 along the length of the isoquant is 
a Cobb-Douglas production function.  A Cobb-Douglas production function has the 
form: 

Q = f(K, L) = AKαLβ     

Where A, 𝛼𝛼, and 𝛽𝛽 are all constants.  A is a measure of technical efficiency (total factor 
productivity).  𝛼𝛼 and 𝛽𝛽 represent the shares of total output received by capital and 
labour respectively and are usually assumed to sum to one: i.e. 𝛼𝛼 + 𝛽𝛽 = 1.  This yields 
the case of constant returns to scale, meaning that if K and L are both increased by 
some common factor (m), then output Q will also increase by m.  This can be 
demonstrated as follows.  

Q = AKαLβ     

Now increase both K and L by some scalar m: 
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Q = A(mK)α(mL)β      

Q = AmαKαmβLβ 

Q = Amα+βKαLβ 

Q = AmKαLβ   (since 𝛼𝛼 + 𝛽𝛽 = 1) 

Q = mQ 

Thus, increasing both factors by m increases total output by m.  For example, if both 
capital and labour are doubled (m = 2) then Q will double (2Q).  This is constant returns 
to scale.  If 𝛼𝛼 + 𝛽𝛽 > 1 there are increasing returns to scale and if 𝛼𝛼 + 𝛽𝛽 < 1 there are 
decreasing returns to scale.  

We can show that a Cobb-Douglas production function has an Elasticity of Substitution 
of 1 whatever its returns to scale.  We know that: 

σ = 
d�KL�

d(MRTS)
 . MRTS

K/L
 

We know also that: 

MRTSLK =  – ∂Q/∂L
∂Q/∂K

 = – 
MPL
MPK

 

For a Cobb-Douglas function: 

∂
∂K

(AKαLβ) = 𝛼𝛼AKα−1Lβ = MPK 

∂
∂L

(AKαLβ) = 𝛽𝛽AKαLβ−1 = MPL 

Hence the MRTS equals: 

MRTSLK = 
βAKαLβ−1

αAKα−1Lβ
 = - 

β
α
 K
L
 

Thus, the MRTS depends upon the ratio of K to L and the fixed ratio (𝛽𝛽/𝛼𝛼). 

In which case: 

σ = 
d�KL�

d�−βα
K
L�

 . 
−βα

K
L

K/L
 = 

d�KL�

d�−βα
K
L�

 . - β
α
 

Since 𝛽𝛽/𝛼𝛼 is fixed, d�− β
α

K
L� = - 

β
α
d�K

L
�.  Which means we have: 
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σ = 
d�KL�

d�−βα
K
L�

 . - β
α
 = 

d�KL�

−βαd�
K
L�

 . - β
α
 = 
−βα
−βα

 = 1 

Hence, we have shown that for a Cobb-Douglas production function with constant 
returns to scale has an Elasticity of Substitution of 1 for any ratio of K to L, i.e. at any 
point on a given isoquant.  What this means is that for any movement along an 
isoquant, the percentage change in capital intensity (K/L) is the same as the 
percentage change in the MRTS.1 

 

A Numerical Example 

Suppose our Cobb-Douglas production function is of the form: 

Q = 10L0.6K0.4 

Assuming that L = 100 and K = 200, we have: 

Q = 10(100)0.6(200)0.4 

Since the power terms sum to one (0.6 + 0.4) this production function exhibits constant 
returns to scale.  The Marginal Rate of Technical Substitution is: 

MRTSLK = – ∂Q/∂L
∂Q/∂K

 = – 
MPL
MPK

 = 
0.6(10)L−0.4K0.4

0.4(10)L0.6K−0.6 =  
6L−0.4K0.4

4L0.6K−0.6 =  - 
3
2
 K
L
 =  

-1.5�200
100
� = -1.5 x 2 = -3. 

σ = 
d�KL�

d�−1.5KL�
 . 
−1.5KL

K
L

 = 
d�KL�

d�−1.5KL�
 . -1.5 = 

d�KL�

−1.5d�KL�
 . -1.5 

Given that L = 100 and K = 200, then: 

K
L
 = 200

100
 = 2 

Now suppose capital increases from 200 to 300 and labour decreases from 100 to 50 
(in other words, that we are moving up an isoquant).  In this case: 

K  
L

 = 300
50

 = 6 

Hence: 

 
1 S. Estrin, D. Laidler, and M. Dietrich, Microeconomics (Pearson, Harlow, Fifth Edition, 2008), p. 155.  
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d�K
L
� = 6 – 2 = 4 

Substituting this value for d(K/L) into 

σ = 
d�KL�

−1.5d�KL�
 . -1.5 = 

4
−1.5(4)

 x -1.5 = 
4
−6

 x -1.5 = 1 

Which shows, as expected, that the Elasticity of Substitution along a Cobb-Douglas 
isoquant is 1.  

 

Constant Elasticity of Substitution (CES) Production Function 
A Cobb-Douglas production function always has an Elasticity of Substitution of one.  
However, in 1961, Arrow, Chenery, Minhas, and Solow formulated a production 
function with a constant Elasticity of Substitution which can take any positive value.1  
Their CES production function has the following form: 

Q = A[𝛼𝛼K−ρ + (1 – 𝛼𝛼)L−ρ]−1/ρ 

A is a total factor productivity parameter and is > 0 

𝛼𝛼 is a factor distribution parameter – in this case the distribution of the total product Q 
between capital (K) and labour (L).  It is 0 ≤ 𝛼𝛼 ≤ 1 

𝞀𝞀 (pronounced roe) is a measure of the degree of factor substitution.  Its values are 𝞀𝞀 
≥ -1. 

This function is homogeneous in degree one, meaning it exhibits constant returns to 
scale.  We can show this as follows.  Imagine the values for capital and labour are 
both scaled up or down by the quantity j.  Then: 

Q = A[𝛼𝛼K−ρ + (1 – 𝛼𝛼)L−ρ]−1/ρ 

becomes: 

Q = A[𝛼𝛼(jK)−ρ + (1 – 𝛼𝛼)(jL)−ρ]−1/ρ 

Q = A{j−ρ[𝛼𝛼K−ρ + (1 – 𝛼𝛼)L−ρ]}−1/ρ 

Q = (j−ρ)−1/ρA[𝛼𝛼K−ρ + (1 – 𝛼𝛼)L−ρ]−1/ρ 

Q = j(Q)  

 
1 K. Arrow, H. Chenery, B. Minhas, and R. Solow, ‘Capital-Labor Substitution and Economic Efficiency’, 
The Review of Economics and Statistics, Vol XLIII, No. 3 (August 1961), pp. 225-250.  
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Hence, multiplying the factor inputs by a scalar j increases total output Q by the same 
scalar j, which is what is meant by constant returns to scale.  

The isoquant generated by such a production function is downward sloping when K is 
plotted on the vertical axis and L on the horizontal.  To show this, we first need to 
calculate the marginal products of capital and labour.1   

First the marginal product of labour QL. We calculate this by taking the partial 
derivative of Q with respect to L. 

∂
∂L

{A[𝛼𝛼K−ρ + (1 – 𝛼𝛼)L−ρ]−1/ρ} 

Setting 𝛼𝛼K−ρ + (1 – 𝛼𝛼)L−ρ = Z we have: 

Z = 𝛼𝛼K−ρ + (1 – 𝛼𝛼)L−ρ 

Hence: 

Q = A[Z]−1/p 

We now differentiate Q by L using the chain rule: 

∂Q
∂L

 = ∂
∂L

 A[Z]−1/p x ∂Z
∂L

 

∂
∂L

 A[Z]−1/ρ = A�− 1
ρ
�Z−(1ρ−1) = A�− 1

ρ
�Z−(1ρ+ 1) 

Differentiating Z by L we have: 

∂Z
∂L

 = ∂
∂L

[𝛼𝛼K−ρ + (1 – 𝛼𝛼)L−ρ] 

∂Z
∂L

 = (1 – 𝛼𝛼)-𝞀𝞀L−ρ−1  

Thus: 

∂Q
∂L

 = A�− 1
ρ
�Z−(1ρ+ 1) x (1 – 𝛼𝛼)-𝞀𝞀L−ρ−1  

∂Q
∂L

 = A(1-𝛼𝛼) L−ρ−1Z−(1ρ+ 1)  (since -1/𝞀𝞀 x -𝞀𝞀 = 1) 

Now, we already know that: 

Q = A[Z]−1/p 

Hence: 

 
1 In the calculations which follow I have been greatly assisted by Gautham Arun of Haberdashers’ 
School, Elstree.  
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Z−1/p = Q
A

 

Z = �Q
A
�
−ρ

    (multiplying the exponents of both sides by -𝞀𝞀) 

So: 

Z−(1ρ+ 1) becomes ��Q
A
�
−ρ
�
−�1ρ+1� =  �Q

A
�
1+ ρ

    [since -𝞀𝞀(-1
ρ
 – 1) = 1 + 𝞀𝞀] 

Thus: 

∂Q
∂L

 = A(1-𝛼𝛼) L−ρ−1Z−(1ρ+ 1)  

can now be written: 

∂Q
∂L

 = A(1-𝛼𝛼) L−ρ−1 �Q
A
�
1+ ρ

   

∂Q
∂L

 = A� 1
A1+ρ

� (1 − α) L−ρ−1Q1+ρ 

∂Q
∂L

 = A−ρ(1 − α) L−ρ−1Q1+ρ 

∂Q
∂L

 = (1−α) L−ρ−1

Aρ
Q1+ρ 

∂Q
∂L

 = (1−α)
Aρ

Q1+ρ

Lρ+1
 

∂Q
∂L

 =QL = MPL = 
(1−α)
Aρ

 �Q
L
�
ρ+1

 

The marginal product of capital QK is calculated by taking the partial derivative of Q 
with respect to K: 

∂
∂K

{A[𝛼𝛼K−ρ + (1 – 𝛼𝛼)L−ρ]−1/ρ} 

We calculate this by the same use of the chain rule we used to arrive at the marginal 
product of labour, the expression for QK being: 

∂Q
∂K

 = QK = 
α
Aρ

 �Q
K
�
ρ+1

 

Note that in both cases the marginal products of labour and capital are positive since 
𝛼𝛼 is positive and less than one so both (1-𝛼𝛼)/Aρ and 𝛼𝛼/Aρ are positive.  We can also 
show that the gradient of the isoquant is negative.  The gradient of an isoquant is 
dK/dL, which is equal to -MPL/MPK. Thus: 
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dK
dL

 = - QL
QK

 = - 
(1−α)
Aρ  �QL�

ρ+1

α
Aρ �QK�

ρ+1  = - 
(1−α)
Aρ

 �Q
L
�
ρ+1 Aρ

α
 �K
L
�
ρ+1

 = – �1− α
α
� �K

L
�
ρ+1

 

which is negative since both the parentheses terms are positive.  

Finally, following the exposition of Alpha Chiang, we can derive an expression for the 
Elasticity of Substitution for this production function.1   

We know that a firm will minimise its costs of producing a given output when its 
isoquant is tangential to its isocost curve, where the gradient of the isocost line is 
PL/PK.  In other words:  

dK
dL

 = �1− α
α
� �K

L
�
ρ+1

 = w
r
 

�1− α
α
�

1
1+ ρ �K

L
� = �w

r
�

1
1+ ρ 

�K
L
� = 

�wr �
1

1+ ρ

�1− α
α �

1
1+ ρ

 

�K
L
� = � α

1−α
�

1
1+ ρ �w

r �
1

1+ ρ 

To simplify, we write: 

� 𝛼𝛼
1−𝛼𝛼

�
1

1+ 𝜌𝜌 = c 

Hence: 

�K
L
� = c �w

r �
1

1+ ρ 

We now have K/L as a linear function of w/r.  Thus, differentiating K/L by w/r we get: 

d�KL�

d�wr �
 = c

1+ ρ
�w
r
�

1
1+ ρ−1 

Having arrived at these results, we can now calculate the formula for the Elasticity of 
Substitution under a CES production function.  Recall that the Elasticity of Factor 
Substitution is:  

 
1 A. Chiang, Fundamental Methods of Mathematical Economics (McGraw-Hill, New York, 2nd Edition, 
1974), pp. 416-417.  
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σ = 
d�KL�

d(MRTS)
 . MRTS

K/L
 or  

d�KL�
d(MRTS)

K/L
MRTS

 

We have seen that, for a cost minimising firm, the Marginal Rate of Technical 
Substitution is equal to MPL/MPK = w/r.  Hence any cost-minimising firm seeking an 
optimal combination of capital and labour inputs will respond to a change in relative 
prices of labour and capital by adjusting its use of labour and capital until: 

MPL
MPK

 = w
r
 = MRTS 

and: 

d�MPL
MPK� = d�w

r � = dMRTS 

So, with respect to our quotient formula for σ, the numerator term can be re-written as 
follows: 

d�KL�

d(MRTS)
 = 

d�KL�

d�wr �
 = c

1+ ρ
�w
r
�

1
1+ ρ−1 

With respect to the denominator, we have seen that: 

�K
L
� = c �w

r �
1

1+ ρ 

While: 

MRTS = �w
r � 

Thus: 

K/L
MRTS

 = 
c�wr �

1
1+ ρ

�wr �
 = c �w

r �
1

1+ ρ−1
 

Combining these results we have: 

σ = 

d�KL�
d(MRTS)

K/L
MRTS

 = 

c
1+ ρ�

w
r �

1
1+ ρ−1

c�wr �
1

1+ ρ−1
 = 

1
1+ ρ

 

Thus we arrive at the formula for calculating the Elasticity of Supply for a CES 
production function, namely: 
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σ = 
1

1+ ρ
  

What this shows is that, for a given 𝞀𝞀, the Elasticity of Substitution is a constant, where 
𝞀𝞀 is a measure of the degree to which labour and capital can be substituted.  But, 
unlike the Cobb-Doulgas function, σ can take different values according to the value 
of 𝞀𝞀.  These can be summarised as follows: 

-1 < 𝞀𝞀 < 0 then σ > 1.  As 𝞀𝞀 tends towards -1 then σ tends towards ∞ which is the case 
of perfect factor substitution, corresponding to a linear isoquant. 

𝞀𝞀 = 0 then σ = 1.  This is the case of the Cobb-Douglas production function. 

𝞀𝞀 > 0 < ∞ then σ < 1 tending towards 0. 

Analysing production, capital-labour ratios, wage, and factor share data for US and 
Japanese industry over the period 1949-1955, Arrow, Chenery, Minhas, and Solow 
estimated that the Elasticity of Substitution (σ) was generally less than 1, being around 
0.85.   In other words, capital and labour are substitutable, but not perfectly so and 
slightly less than the Cobb-Douglas production function implies.  This suggests that if 
the ratios at which factors of production such as labour and capital are present within 
an economy change, and the ratios of factor prices and hence the optimal MRTS 
change, the production process is sufficiently flexible in terms of Elasticity of Factor 
Substitution to permit the varying factor supplies to be employed.  Subsequent 
research has broadly endorsed these findings.  Most studies find that σ < 1, usually 
occupying something within the range of 0.4 to 0.8, meaning that a 1% rise in the ratio 
of the price of labour to the price of capital will cause around a 0.6% rise in the ratio of 
capital to labour.1     

 

 

 
1 D. Hamermesh, Labor Demand (Princeton University Press, Princeton, 1993), pp. 77-79.  


